
ENGI 5432 2.   Surface Integrals Page 2.01 

2. Surface Integrals 
 
This chapter introduces the theorems of Green, Gauss and Stokes.   Two different 
methods of integrating a function of two variables over a curved surface are developed. 
 
The sections in this chapter are: 
 
2.1    Line Integrals 
2.2    Green’s Theorem 
2.3    Path Independence 
2.4    Surface Integrals - Projection Method 
2.5    Surface Integrals - Surface Method 
2.6    Theorems of Gauss and Stokes; Potential Functions 
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2.1    Line Integrals 
 
Two applications of line integrals are treated here:  the evaluation of work done on a 
particle as it travels along a curve in the presence of a [vector field] force; and the 
evaluation of the location of the centre of mass of a wire. 
 
Work done:   
 
The work done by a force  F  in moving an elementary distance  Δr  along a curve C is 
approximately the product of the component of the force in the direction of Δr and the 
distance | Δr | travelled:  

 
 

cosW F θΔ ≈ =F r r
K K KiΔ Δ  

 
 
Integrating along the curve C  yields the total work done by the force F in moving along 
the curve C:  

C

W = ∫F dr
K Ki  

 

( )1 2 3 1 2 3
1

0

t

tC

dx dy dzf dx f dy f dz f f f dt
dt dt dt

⎛ ⎞= + + = + +⎜ ⎟
⎝ ⎠∫ ∫  

 

C C

dW d
dt

∴ = =∫ t∫ rF dr F
KK KKi i  
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Example 2.1.1   
 
Find the work done by , ,y x z= −F

K
 in moving around the curve C (defined in 

parametric form by   x = cos t ,  y = sin t ,  z = 0 ,  0 ≤ t ≤ 2π ). 
 
 

, , sin , cos , 0
C

y x z t t= − = −F
K

 

 

cos , sin , 0 sin , cos , 0d d t t t t
dt dt

= = −
rK  

 
2 2sin cos 0 1d t t

dt
⇒ = + +

rF
KK

i =  

2 2

00
1 2dW dt dt

dt

π π
π⇒ = = =∫∫ rF

KK
i  

 

 
 

Note that ˆ 1v

d
dtF

d
dt

= = =

rF
F v

r

KK
iK

i K  everywhere on the curve C, so that  

1W C 2π= × =    (the length of the path around the circle). 
 
Also note that ˆ, , curl 2y x z= − ⇒ =F

K
F k
K

2

 everywhere in . 3\
The lesser curvature of the circular lines of force further away from the z axis is balanced 
exactly by the increased transverse force, so that curl F is the same in all of . 3\
 
We shall see later (Stokes’ theorem, page 2.40) that the work done is also the normal 
component of the curl integrated over the area enclosed by the closed curve C.   In this 
case  

( ) ( ) ( )2ˆ ˆˆ 2 1W A π π= =F n k k
K K

i i∇× = . 
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Example 2.1.1  (continued) 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Example 2.1.2  
Find the work done by , ,x y z=F

K
 in moving around the curve C (defined in 

parametric form by   x = cos t ,  y = sin t ,  z = 0 ,  0 ≤ t ≤ 2π ). 
 
 

, , cos , sin , 0
C

x y z t t= =F r
K

= K  

 

cos , sin , 0 sin , cos , 0d d t t t t
dt dt

= = −
rK  

 

cos sin sin cos 0 0d t t t t
dt

⇒ = − + +
rF
KK

i =  

 
2

0
0 0W dt

π
⇒ = =∫  

 
In this case, the force is orthogonal to the direction of motion at all times and no work is 
done. 
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If the initial and terminal points of a curve C  are identical and the curve meets itself 
nowhere else, then the curve is said to be a simple closed curve.  
 
Notation:  
When C is a simple closed curve, write 

C
∫F dr
K Ki  as 

C
∫ F dr
K Kiv . 

 
F  is a conservative vector field if and only if  0

C
=∫ F dr

K Kiv   for all simple closed curves 

C  in the domain. 
 
Be careful of where the endpoints are and of the order in which they appear (the 

orientation of the curve).   The identity 
1 0

0 1

t t

t t

d dt dt
dt dt

≡ −∫ ∫rF F drK KK K
i i

Ki

 leads to the result  

C C
= −∫ ∫F dr F dr

K KKi> ? ∀ simple closed curves  C 

 
 
Another Application of Line Integrals:  The Mass of a Wire  
 
Let  C  be a segment  (t0 ≤ t ≤ t1)  of wire of line density  ρ (x, y, z).   Then  
 

 
 

( ), ,m x y zρΔ ≈ Δs   
1

0

t

tC C

ds dsm ds dt
dt dt

ρ ρ ρ⇒ = = =∫ ∫ dt∫  

 
First moments about the coordinate planes: 
 

m sρ= Δ ≈ ΔM r r
K K KΔ  

1

0

t

t

ds dt
dt

ρ⇒ = ∫M r
K K  

 
 
 
 

The location rK  of the centre of mass of the wire is , where
m

=
Mr
K

K  

2 2
1 1

0 0

, and
t t

t t

ds ds ds d dx dy dzdt m dt
dt dt dt dt dt dt dt

ρ ρ ⎛ ⎞ ⎛ ⎞ ⎛ ⎞= = = = + +⎜ ⎟ ⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠ ⎝ ⎠∫ ∫ rM r

2

.
KK K  
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Example 2.1.3  
 
Find the mass and centre of mass of a wire C (described in parametric form by  
x = cos t ,   y = sin t ,  z = t ,    −π ≤ t ≤ π )  of line density   ρ = z2 . 
 
 
Let  c = cos t ,   s = sin t .        [The shape of the wire is  
         one revolution of a helix,  

, , , ,1dc s t s c
dt

= ⇒ = −
rr
KK     aligned along the z axis, 

         centre the origin.] 

( )2 2 21 2ds s c
dt

⇒ = − + + =  

 
2 2z tρ = =  

 

2
3

2 2
3C

ds tm ds dt t dt
dt

ππ π

π π π
ρ ρ

− − −

⎡ ⎤
⇒ = = = = ⎢ ⎥

⎣ ⎦∫ ∫ ∫  

 
32 2

3
m π⇒ =  

 
 

1

0

2 2 32 , ,
t

t

ds dt t c t s t dt
dt

π

π
ρ

−
= =∫ ∫M r

K K  

 
 
x component: 
 
Integration by parts. 
 

( )2 2 2 2t c dt t s tc⎡ ⎤= − +⎣ ⎦∫  

 

( )2 2 2 2t c dt t s tc
π π

ππ −−
⎡ ⎤⇒ = − +⎣ ⎦∫  

( ) ( )0 2 0 2 4π π π= − − + = −  
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Example 2.1.3   (continued) 
 
y component: 
 
For all integrable functions  f (t)  and for all constants  a  note that  
 

( )
( )

( ) ( )
0

0 if is an ODD function

2 if is an EVEN function

a
a

a

f t
f t dt

f t dt f t−

⎧
⎪= ⎨
⎪⎩

∫ ∫
 

 
2 sint t   is an odd function 

 
2 0t s dt

π

π−
⇒ =∫  

 
 
z component: 
 
t 3  is also an odd function 

3 0t dt
π

π−
⇒ =∫  

 
 
Therefore   ˆ4 2π= −M i

K
 

 

23
3 6ˆ ˆ4 2

2 2m
π

ππ
= = − = −

Mr i
K

K i  

 

The centre of mass is therefore at 2
6 , 0, 0
π

⎛ ⎞−⎜ ⎟
⎝ ⎠
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2.2    Green’s Theorem 
 
Some definitions:  
 
A curve  C  on ú2 (defined in parametric form by ( ) ( ) ( )ˆ ,t x t y t= +r i ĵK  a ≤ t ≤ b) is 
closed iff  (x(a), y(a))  =  (x(b), y(b)) . 
 
The curve is simple iff   ( ) ( )1t t≠r rK K

2   for all t1, t2 such that   a <  t1 <  t2 <  b ;  
(that is, the curve neither touches nor intersects itself, except possibly at the end points). 
  
Example 2.2.1   
 
Two simple curves:  
          open     closed 

 
 
Two non-simple curves: 
          open     closed 

 
 



ENGI 5432 2.2  Green’s Theorem Page 2.09 

Orientation of closed curves: 
 
A closed curve C  has a positive orientation iff a point  r(t)  moves around C  in an 
anticlockwise sense as the value of the parameter t increases. 
 
Example 2.2.2  

 
 
           Positive orientation         Negative orientation 
 
Let  D  be the finite region of ú2 bounded by C.    When a particle moves along a curve 
with positive orientation, D is always to the left of the particle. 
 
For a simple closed curve C enclosing a finite region D of ú2 and for any vector function 

1 2,f f=F
K

 that is differentiable everywhere on C and everywhere in D,  
Green’s theorem is valid:  

2 1

C D

f f dA
x y

⎛ ⎞∂ ∂
= −⎜ ⎟∂ ∂⎝ ⎠∫ ∫∫F dr

K Ki>  

 
The region D is entirely in the xy-plane, so that the unit normal vector everywhere on D is 
k.   Let the differential vector  dA = dA k , then Green’s theorem can also be written as  
 

( ) ( )ˆ curl
C D D

dA= =∫ ∫∫ ∫∫F dr F k F dA
KK K K KKi i> ∇× i  

( ) 2 1
1 2 1 2, ,

C D

f ff f dx dy f dx f dy d
x y

⎛ ⎞∂ ∂
= ⇒ + = ⎜ ⎟∂ ∂⎝ ⎠∫ ∫∫F dr

K Ki i > A−  

and 
T

T
2 1

1 2

det detf f x y
x y

f f

∂ ∂⎡ ⎤
⎡ ⎤∂ ∂ ⎢ ⎥∂ ∂− = = =⎢ ⎥⎢ ⎥∂ ∂ ⎣ ⎦⎢ ⎥⎣ ⎦

F

K
K
∇

z component of F
K K
∇×  

 
 
 
 
Green’s theorem is valid if there are no singularities in D. 
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Example 2.2.3   

  , 0 :x
r

=
K
F  

 
 
 
Green’s theorem is valid for curve  C1  but not for curve C2. 
There is a singularity at the origin, which curve  C2  encloses. 
 
 
 
 
 
 
Example 2.2.4  
 
For ,x y x y= + −F

K
 and C as shown, evaluate .

C
∫ F dr
K Ki>  

 

 
 

C PQ QR RP

= + +∫ ∫ ∫ ∫F dr F dr F dr F dr
K K KK K Ki i i>

K Ki  
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Example 2.2.4   (continued) 
 

,x y x y= + −F
K

 
 
Everywhere on the line segment from P to Q,  y = 2 – x   (and the parameter  t  is just  x) 
 

, 2 1, 1 and 2, 2 2dx x x
dx

⇒ = − ⇒ = − = −
rr F
K KK  

 

( )( ) ( )
02
2

0 0

2 2
2 2 2 4 2 4

PQ

x dx x dx x x⎡ ⎤⇒ = − − = − = −⎣ ⎦∫ ∫ ∫F dr
K Ki  

 
=   (0 – 0)  –  (8 – 4)  =  –4 
 
 
 
Everywhere on the line segment from Q  to R,  y = 2 + x 
 

, 2 1,1 and 2 2, 2dx x x
dx

⇒ = + ⇒ = = + −
rr F
K KK  

 

( )( ) 22
0

2 2

0 0
2 2 2 2

QR

x dx x dx x
−− −

⎡ ⎤⇒ = + − = = ⎣ ⎦∫ ∫ ∫F dr
K Ki  

 
=  4 – 0  =  4 
 
 
Everywhere on the line segment from R  to P,  y = 0 
 

, 0 1, 0 and ,dx x x
dx

⇒ = ⇒ = =
rr F
K KK  

 

( )
22

2

2 2

2 2
0

2RP

xx dx x dx
−

− −

⎡ ⎤
⇒ = + = = ⎢ ⎥

⎣ ⎦∫ ∫ ∫F dr
K Ki  

 
=  2 – 2  =  0 
 

4 4 0 0
C

⇒ = − + + =∫ F dr
K Ki>  
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Example 2.2.4   (continued) 
 
OR use Green’s theorem! 
 

 
 

( ) ( )
1 2

det 1 1 0x y x y x y
x y

f f

∂ ∂⎡ ⎤
∂ ∂⎢ ⎥∂ ∂ = − − + = − =⎢ ⎥ ∂ ∂

⎢ ⎥⎣ ⎦

 

everywhere on D 
 

2 1 0 0
D D

f f dA dA
x y

⎛ ⎞∂ ∂
⇒ − =⎜ ⎟∂ ∂⎝ ⎠∫∫ ∫∫ =  

 
By Green’s theorem it then follows that 
 

0
C

=∫ F dr
K Ki>  
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Example 2.2.5  
Find the work done by the force 2,x y y=F

K
 in one circuit of the unit square. 

 
 

 
 
By Green’s theorem,  
 

2 1

C D

f fW d
x y

⎛ ⎞∂ ∂
= = −⎜ ⎟∂ ∂⎝ ⎠∫ ∫∫F dr

K Ki> A  

 

( ) ( )22 1 0f f y x y x
x y x y

∂ ∂ ∂ ∂
− = − = −

∂ ∂ ∂ ∂
 

 
The region of integration is the square  0 < x < 1,  0 < y < 1  

( )
1 1

0 0
D

W x dA x dy⇒ = − = −∫ ∫∫∫ dx

0

 

[ ] ( )
1 1 1 11

00 0 0 0
1 1x dy dx x y dx x dx⎛ ⎞= − = − = − −⎜ ⎟

⎝ ⎠∫ ∫ ∫ ∫  

12

0

1 10
2 2
x⎡ ⎤

= − = − + = −⎢ ⎥
⎣ ⎦ 2

 

 
Therefore  

1
2W = −  

 
 
 
The alternative method (using line integration instead of Green’s theorem) would involve 
four line integrals, each with different integrands! 
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2.3    Path Independence 
 
Gradient Vector Fields:   

If  ,φ=F
K K

∇  then  ,
x y
φ φ∂ ∂

= ⇒
∂ ∂

F
K 2 1 0yx xy

f f
x y

φ φ∂ ∂
− = − ≡

∂ ∂
 

 
(provided that the second partial derivatives are all continuous). 
 
It therefore follows, for any closed curve C and twice differentiable potential function φ 
that 
 

0
C

φ ≡∫ dr
K Kiv∇  

 
 
 
Path Independence   
 
If  (or )φ φ= = −F F
K K K K

∇ ∇ , then  φ  is a potential function for F. 
Let the path C travel from point Po to point P1:  
 

C C C C

dx dy dz d
x y z
φ φ φφ φ

⎛ ⎞∂ ∂ ∂
= = + + =⎜ ⎟∂ ∂ ∂⎝ ⎠∫ ∫ ∫ ∫F dr dr

K KK Ki i∇  

[chain rule] 
 

[ ] ( ) ( )1

0 1 0
P
P P Pφ φ φ= = −  

which is independent of the path  C  between the two points. 
 

Therefore  
work done difference in 

by between endpoints of C
φ

φ
⎛ ⎞ ⎛

=⎜ ⎟ ⎜
⎝ ⎠ ⎝

K
∇

⎞
⎟
⎠

=

 

 
( ) ( ) 0

C

P Pφ φ φ⇒ = −∫ dr
K Kiv∇  

[work done = potential difference] 
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Domain   
 
A region Ω of  is a domain if and only if 2\
1) For all points Po in Ω, there exists a circle, centre Po, all of whose interior points 

are inside Ω; and 
2) For all points Po and P1 in Ω, there exists a piecewise smooth curve C, entirely in 

Ω, from Po to P1. 
 
 
Example 2.3.1  Are these domains? 
 
       { (x, y) | y > 0 }        { (x, y) | x ≥ 0 } 

 
 
         YES (but not simply connected)      NO 
 
 
 
 
 
 
If a domain is not specified, then, by default, it is assumed to be all of ú2. 
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When a vector field F is defined on a simply connected domain Ω, these statements are 
all equivalent (that is, all of them are true or all of them are false): 
 φ=F ∇    for some scalar field φ  that is differentiable everywhere in Ω; 
K K

 F  is conservative; 
  is path-independent (has the same value no matter which path within 

Ω is chosen between the two endpoints, for any two endpoints in Ω); 
C
∫F dr
K Ki

 startend
C

φ φ= −∫F dr
K Ki

K

 (for any two endpoints in Ω); 

 0Ki  for all closed curves C lying entirely in Ω; 
C

=∫ F drv
 2 1f f

x y
∂
∂ ∂

∂
=  everywhere in Ω; and 

 0
KK

 everywhere in Ω (so that the vector field F is irrotational). ∇× =F
K

There must be no singularities anywhere in the domain Ω in order for the above set of 
equivalencies to be valid. 
 
 
Example 2.3.2  
 
Evaluate ( ) ( )( 22 3

C
)x y dx x y dy+ + +∫  where C  is any piecewise-smooth curve from 

(0, 0) to (1, 2). 
 
 

22 , 3x y x y= + +F
K

  is continuous everywhere in  2Ω = \
 

2 11f f
x y

∂ ∂
= = ⇒

∂ ∂
F
K

 is conservative and φ=F
K K

∇  

 
22 and 3x y x

x y
yφ φ∂ ∂

⇒ = + = +
∂ ∂

 

 
A potential function that has the correct first partial derivatives is  2 3x xy yφ = + +  

( )

( )
( ) (

1,2

0,0

1 2 8 0 0 0
C

φ
⎡ ⎤

⇒ = = + + − +⎢ ⎥
⎣ ⎦∫F dr

K Ki )+  

 
Therefore 

( ) ( )( )22 3
C

x y dx x y dy+ + + =∫ 11  
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Example 2.3.3 (A Counterexample) 

Evaluate , where 
C
∫ F dr
K Ki> 2 2 2 2,y x

x y x y
−

=
+ +

F
K

 and C is the unit circle, centre at the 

origin. 
 
 K
F  is continuous everywhere except (0, 0) 
 
⇒ Ω  is not simply connected.   [Ω  is all of  except (0, 0).] 2\
 

( )
2

2 2

22 2
1f fx y

x yx y

∂ ∂−
=

∂ ∂+
=    everywhere in Ω  

 
 
We cannot use Green’s theorem, because F

K
 is not continuous everywhere inside C  

(there is a singularity at the origin). 
 
Let  c = cos t  and  s = sin t  then 
 

( ), 0 2 ,c s t s cπ ′= ≤ < ⇒ = −r rK K  
 

2 2 2 2, ,s c s c
c s c s

−
= =

+ +
F
K

−  

 

( )
2 2 22 2

00 0
1

C

s c dt dt t
π π π

⎡ ⎤⇒ = − − = − = − ⎣ ⎦∫ ∫∫ F dr
K Ki>  

Therefore  
2

C

π= −∫ F dr
K Ki>  

 
Note:  , but  0

C

≠∫ F dr
K Ki>

everywhere on , , where Arctan x k
y

φ φ
⎛ ⎞

Ω = = +⎜ ⎟
⎝ ⎠

F
K K

∇  

The problem is that the arbitrary constant  k  is ill-defined. 
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Example 2.3.3    (continued) 
 
Let us explore the case when  k = 0. 

Contour map of Arctan 0x
y

φ
⎛ ⎞

= +⎜ ⎟
⎝ ⎠

 

 

 
 
We encounter a conflict in the value of the potential function φ . 
 
Solution:  Change the domain  to the simply connected domain  Ω

2 except the
non-negative  axisx
⎛ ⎞

′Ω = ⎜ ⎟
⎝ ⎠

\
 

then the potential function φ  can be well-defined, but no curve in ′Ω  can enclose the 
origin. 
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2.4    Surface Integrals - Projection Method 
 
Surfaces in ú3  
 
In ú3 a surface can be represented by a vector parametric equation  

( ) ( ) ( )ˆ ˆ ˆ, , ,x u v y u v z u v= + +r i j kK  
where  u, v  are parameters. 
 
Example 2.4.1  
 
The unit sphere, centre O, can be represented by  

( ), sin cos , sin sin , cosθ φ θ φ θ φ=rK θ
2

 

       
0 and 0θ π φ π≤ ≤ ≤

↑ ↑
<

 

      declination            azimuth 
 
 
If every vertical line (parallel to the z-axis) in ú3 meets the surface no more than once, 
then the surface can also be parameterized as  

( ) ( ) ( ), , , , or as ,x y x y f x y z f x= =rK y  
Example 2.4.2  
 

( ){ }2 2 2 24 , , |z x y x y x y= − − + ≤ 4     is a hemisphere, centre O. 
 
 
A simple surface does not cross itself.    
If the following condition is true:   

{ ( ) ( ) ( ) ( )1 1 2 2 1 1 2 2, , ,u v u v u v u v= ⇒ =r rK K ,  for all pairs of points in the domain} 
then the surface is simple.    
 
The converse of this statement is not true.    
This condition is sufficient, but it is not necessary for a surface to be simple. 
The condition may fail on a simple surface at coordinate singularities.   For example, one 
of the angular parameters of the polar coordinate systems is undefined everywhere on the 
z-axis, so that spherical polar (2, 0, 0) and (2, 0, π) both represent the same Cartesian 
point (0, 0, 2).   Yet a sphere remains simple at its z-intercepts. 
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Tangent and Normal Vectors to Surfaces  
 
A surface S is represented by r(u, v).   Examine the neighbourhood of a point Po at  
r(uo, vo).   Hold parameter v constant at vo (its value at Po) and allow the other parameter 
u to vary.   This generates a slice through the two-dimensional surface, namely a one-
dimensional curve Cu containing Po and represented by a vector parametric equation 

 with only one freely-varying parameter (u). ( o,u v=r rK K )
 
 
 

( )o: ,uC u vrK  
 

( )o: ,vC ur vK  
 
 
 
 
 

 
If, instead, u is held constant at uo and v is allowed to vary, we obtain a different slice 
containing Po, the curve . ( )o: ,vC urK v
 
On each curve a unique tangent vector can be defined. 
 

 
 

At all points along Cu, a tangent vector is defined by ( )( )o,u u v
u
∂

=
∂

T r
K K . 

[Note that this is not necessarily a unit tangent vector.] 

At Po the tangent vector becomes ( )( )
o

o o,u P
u v

u
∂

=
∂

T r
K K  . 

Similarly, along the other curve Cv, the tangent vector at Po is ( )( )
o

o o,v P
u v

v
∂

=
∂

T r
K K . 

If the two tangent vectors are not parallel and neither of these tangent vectors is the zero 
vector, then they define the orientation of tangent plane to the surface at Po. 
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A normal vector to the tangent plane is  
( )o o,

u v
u vu v

∂ ∂
= =

∂ ∂
r rN T T
K KK K K

× ×  

 

( )o o,

ˆ ˆ ˆ

det

u v

x y z
u u u
x y z
v v v

⎡ ⎤
⎢ ⎥
⎢ ⎥∂ ∂ ∂⎢ ⎥=
⎢ ⎥∂ ∂ ∂
⎢ ⎥∂ ∂ ∂⎢ ⎥
∂ ∂ ∂⎣ ⎦

i j k

 ( )
( )

( )
( )

( )
( ) ( )o o,

, , ,
, ,

, , ,
u v

y z z x x y
u v u v u v

∂ ∂ ∂
=

∂ ∂ ∂
, 

 

( )
( )

,
where is the det .

,

x y
u ux y
x yu v
v v

∂ ∂⎡ ⎤
⎢ ⎥∂ ∂∂ ⎢ ⎥
∂ ∂∂ ⎢ ⎥
⎢ ⎥∂ ∂⎣ ⎦

Jacobian  

 
Cartesian parameters  
With   u = x,    v = y,     z = f (x, y) , the components of the normal vector  

1 2 3
ˆ ˆ ˆN N N= + +N i j k

K
   are: 

 

( )
( )1

,
,

y z
N

x y
∂

= =
∂

0

1

f
fx

f x
y

∂
∂∂

= −
∂ ∂
∂

   ( )
( )2

,
,

z x
N

x y
∂

= =
∂

1

0

f
fx

f y
y

∂
∂∂

= −
∂ ∂
∂

 

 
( )
( )3

,
,

x y
N

x y
∂

= =
∂

1 0
1

0 1
=  

 
⇒ a normal vector to the surface   z  =  f (x, y)  at  (xo, yo, zo)  is  

( )o o,
, , 1

x y

f f
x y

∂ ∂
= − − +

∂ ∂
N
K
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If the normal vector N is continuous and non-zero over all of the surface S, then the 
surface is said to be smooth. 
 
Example 2.4.3  
 
A sphere is smooth.  
 
A cube is piecewise smooth (six smooth faces) 
 
A cone is not smooth (  is undefined at the apex) N

K

 
 
 
Surface Integrals (Projection Method)  
 
This method is suitable mostly for surfaces which can be expressed easily in the 
Cartesian form  z = f (x, y).  
 
The plane region  D  is the projection of the surface S : f (r) = c  onto a plane (usually the 
xy-plane) in a 1:1 manner. 
 

 
The plane containing D has a constant unit normal . K n̂
N  is any non-zero normal vector to the surface S. 

 
cosA S αΔ = Δ  

 
but 
 

ˆ
cosα =

N n

N

K
i
K  

 

 



ENGI 5432 2.4   Surface Integrals - Projection Method Page 2.23 

 

ˆ
DS

dS dA⇒ =∫∫ ∫∫
N

N n

K
K
i

 

 
and 
 

   ( ) ( )
ˆ

DS

g dS g d=∫∫ ∫∫
N

r r
N n

K
K K K

i
A  

 
 
 
 
 
 
 
 
 
 
 
 
 
For  z = f (x, y)  and  D = a region of the xy-plane,  

 ˆˆ, , 1 andz z
x y

∂ ∂
= − − =

∂ ∂
N n
K

k  

ˆ 1 and⇒ =N n
K
i  

 

( ) ( )
2 2

1
S D

z zg dS g d
x y

⎛ ⎞ ⎛ ⎞∂ ∂
= +⎜ ⎟ ⎜ ⎟∂ ∂⎝ ⎠ ⎝ ⎠∫∫ ∫∫r rK K A+  

 
which is the projection method of integration of g(x, y, z) over the surface z = f (x, y) . 
 
Advantage:  Region  D  can be geometrically simple (often a rectangle in ). 2\
 
 
 
Disadvantage: Finding a suitable  D  (and/or a suitable 1:1 projection) can be difficult. 
 
 
You may have to split the surface into pieces (such as splitting a sphere into two 
hemispheres) in order to obtain separate 1:1 projections.   The projection fails if part of 
the surface is vertical (such as a vertical cylinder onto the xy plane). 
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Example 2.4.4  
 
Evaluate , where the surface S is the section of the cone  z2 = x2 + y2  in the first 

octant, between z = 2 and z = 4. 
S

z dS∫∫

 
 
 
 z2 = x2 + y2  
 

2 2zz x 0
x
∂

⇒ = +
∂

 

 

2 2

z x x
x z x y
∂

⇒ = =
∂ +

 

 
By symmetry,  
 

2

z y y
y z 2x y
∂

= =
∂ +

 

 
 
 
 
 

22 2 2 2

2 2 21 1 1z z x y zdS dA dA dA dA
x y z z z

⎛ ⎞ ⎛ ⎞ ⎛ ⎞⎛ ⎞∂ ∂⎛ ⎞= + + = + + = + =⎜ ⎟ ⎜ ⎟ ⎜ ⎟⎜ ⎟⎜ ⎟∂ ∂⎝ ⎠ ⎝ ⎠ ⎝ ⎠ ⎝ ⎠ ⎝ ⎠
2  

 
 
Use the polar form for  dA : 

 
2, 2 4 , 0dA r dr d r πθ θ= ≤ ≤ ≤ ≤  

 
2 2r x y z= + =  

 
/2 4

0 2
2

S

z dS r r dr d
π

θ⇒ =∫∫ ∫ ∫  
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Example 2.4.4   (continued) 
 

3
2

4/2/2 4

0 2 0 2
2 1 2

3
S

rz dS d r dr
ππ

θ θ
⎡ ⎤⎡ ⎤

⇒ = ⋅ = ⎢ ⎥⎢ ⎥
⎣ ⎦ ⎣ ⎦∫∫ ∫ ∫  

 
64 8 2 562 0

2 3 3 2
π π⎛ ⎞⎛ ⎞= − − = ⋅⎜ ⎟⎜ ⎟
⎝ ⎠⎝ ⎠ 3

 

 
28 2

3
S

z dS π
⇒ =∫∫  
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2.5 Surface Integrals - Surface Method 
 
When a surface  S  is defined in a vector parametric form  r = r(u, v), one can lay a 
coordinate grid (u, v) down on the surface S. 

A normal vector everywhere on S is 
u v
∂ ∂

=
∂ ∂

r rN
K KK
×  . 

 
 
 
dS du dv= =dS N

K K
 

 
 
 
 
 
 
 
 
 

( ) ( )
S S

g dS g du dv
u v
∂ ∂

= ×
∂ ∂∫∫ ∫∫ r rr r
K KK K

 

 
Advantage:  
 •   only one integral to evaluate 
 
Disadvantage:  
 •   it is often difficult to find optimal parameters  (u, v). 
 
 
 
The total flux of a vector field  through a surface S is F

K

 
ˆ

S S S

dS du dv
u v
∂ ∂

Φ = = = ×
∂ ∂∫∫ ∫∫ ∫∫ r rF dS F N F
K KKK K K

i i i  

(which involves the scalar triple product 
u v
∂ ∂

×
∂ ∂

r rF
K KK

i ). 
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Example 2.5.1: (same as Example 2.4.4, but using the surface method). 
 
Evaluate , where the surface S is the section of the cone  z2 = x2 + y2  in the first 

octant, between z = 2 and z = 4. 
S

z dS∫∫

 
 
 
Choose a convenient parametric net:  
 

2 2u r x y z= = + =  
 
and 
 
v θ=  
 
then 
 

cos , sin ,r rθ θ=r rK  

( )22 4, 0r πθ≤ ≤ ≤ ≤  
 

cos , sin ,1
r

θ θ∂
⇒ =

∂
rK  

 

and sin , cos , 0r rθ θ
θ
∂

= −
∂

rK  

 
ˆ ˆ ˆ

cos sin 1 cos , sin ,
sin cos 0

r r
r r

θ θ θ θ
θ θ

⇒ = ± = ± − −
−

i j k
N
K

r  

 
2 2cos sin 1 2N r θ θ⇒ = = + + =N

K
r  

 
/2 4

0 2
2

S S

z dS z N dr d r r dr d
π

θ θ⇒ = =∫∫ ∫∫ ∫ ∫    (as before) 

28 2
3

S

z dS π
⇒ =∫∫  
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Just as we used line integrals to find the mass and centre of mass of [one dimensional] 
wires, so we can use surface integrals to find the mass and centre of mass of [two 
dimensional] sheets. 
 
Example 2.5.2  
 
Find the centre of mass of the part of the unit sphere (of constant surface density) that lies 
in the first octant. 
 
 

Cartesian equation of the sphere: 
 

2 2 2 1; 0, 0, 0x y z x y z+ + = > > >  
 
The radius of the sphere is  r = 1. 
 
For the parametric net, use the two angular 
coordinates of the spherical polar coordinate 
system ( ), ,r θ φ . 
 

sin cos
sin sin
cos

x
y
z

θ φ
θ φ
θ

=
=
=

 2

2

0

0

π

π
θ

φ

< <

< <
 

 

cos cos , cos sin , sinθ φ θ φ θ
θ
∂

⇒ = −
∂

rK  

 

and sin sin , sin cos , 0θ φ θ φ
φ
∂

= −
∂

rK  

 
ˆ ˆ ˆ

cos cos cos sin sin
sin sin sin cos 0
θ φ θ φ
θ φ θ φ

⇒ = ± −
−

i j
N
K

θ
k

 

 
( )2 2 2sin cos , sin sin , sin cos cos sin2θ φ θ φ θ θ φ φ= ± +  

 
sin sin cos , sin sin , cos sinθ θ φ θ φ θ= ± = ± rθ K  

The outward normal is clearly sinθ= +N r
JK K  

 
sin sinN θ θ⇒ = = =N r

K K  
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Example 2.5.2    (continued) 
 
Mass: 

S S

m dS d dρ ρ θ= =∫∫ ∫∫ N
K

φ  

 
/2 /2

0 0
sin d d

π π
ρ θ θ φ= ∫ ∫  

 

[ ] [ ]
/2 /2 /2 /2

0 00 0
sin cosd d

π π π πρ θ θ φ ρ θ φ= ⋅ = −∫ ∫ ⋅  

 
( )( )20 1 0πρ= + −  

 

2
m ρπ

∴ =  

OR 
 
Note that the mass of a complete spherical shell of radius r and constant density ρ  is 

24 rπ ρ .   Therefore the mass of one eighth of a shell of radius 1 is 4
8 2
ρπ ρ

=
π . 

 
 
By symmetry, the three Cartesian coordinates of the centre of mass are all equal: 
x y z= = . 
 
Taking moments about the xy plane: 
 

( )
/2 /2

0 0
cos sin

S

M z dS d d
π π

ρ ρ θ θ= =∫∫ ∫ ∫ θ φ  

 

[ ]
/2/2 /2 /2

00 0 0

1 cos 2sin 2
2 4

d d
ππ π πθρ θ θ φ ρ ⎡ ⎤= ⋅ = −⎢ ⎥⎣ ⎦∫ ∫ φ⋅  

 
1 1 1 10
4 4 2 2 2 2

mπ π ρρ ⎛ ⎞ ⎛ ⎞= + ⋅ − = ⋅ =⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

 

 
1
2

Mz
m

⇒ = =  

Therefore the centre of mass is at  
( ) ( )1 1 1

2 2 2, , , ,x y z =  
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Example 2.5.3  
 
Find the flux of the field , ,x y z= −F

K
 across that part of  x + 2y + z = 8  that lies in 

the first octant. 
 

 
The Cartesian coordinates x, y  will 
serve as parameters for the surface: 
 

, , 8 2x y x y= − −rK  
 

1, 0, 1
x
∂

⇒ = −
∂
rK  

and 0,1, 2
y
∂

= −
∂

rK  

 
ˆ ˆ ˆ

1 0 1 1, 2,1
0 1 2

⇒ = ± − = ±
−

i j k
N
K

 

Choose N
K

 to point “outwards”. 
1, 2,1=N

K
 

 
Range of parameter values: 
 
In the xy plane: 
 

 
 

0 8 and 0x y⇒ ≤ ≤ ≤ ≤ 4  
 
But the area is a triangle, not a rectangle, so these inequalities do not provide the correct 
limits for the inner integral. 
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Example 2.5.3   (continued) 
 
Net flux = ( )( )ˆ

N

S S S S

F dS dA dAΦ = = = =∫∫ ∫∫ ∫∫ ∫∫F dS F N N F N
KK K K

i i
K K
i  

(where  dA = dx dy) 
 

( ) ( ), , 8 2 1, 2,1 2 8 2 2 2 4x y x y x y x y x y= − − − = + − + + = + −F N
K K
i i  

 
 

( )
4 8 2

0 0
2 2 4

y
x y dx dy

−
⇒ Φ = + −∫ ∫  

 
2 8 24

0 0
2 2 4

2

y

x

x xy x dy
−

=

⎡ ⎤
= + −⎢ ⎥

⎣ ⎦∫  

 

( ) ( ) ( ) ( )
24

0

8 2
2 2 8 2 4 8 2 0 0 0

2
y

y y y
⎛ ⎞⎛ ⎞−
⎜ ⎟⎜ ⎟= + − − − − +
⎜ ⎟⎜ ⎟⎝ ⎠⎝ ⎠

∫ dy+  

 

( )2 2
4

0
2 32 16 2 16 4 32 8y y y y y= − + + − − +∫ dy  

 

( ) ( )
3

2 2
44

0 0

644 4 4 2 4 32 0 0
3 3
yy y dy y

⎡ ⎤ ⎛ ⎞⎛ ⎞= − = − = − − −⎜ ⎟⎢ ⎥ ⎜ ⎟⎝ ⎠⎝ ⎠⎣ ⎦∫  

 
Therefore the net flux is  

128
3

Φ =  

 
 
The iteration could be taken in the other order: 

( )
8 4 /2

0 0
2 2 4

x
x y dy dx

−
Φ = + −∫ ∫

2 4 /2

0
2 4

x

y

8

0
x y xy y dx

−

=
⎡ ⎤= + −⎣ ⎦  ∫

( )2
8

0

1
2

1284
3

x x dx= = − = =∫…  …
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Example 2.5.4    
 
Find the total flux Φ of the vector field ˆz=F k

JK
 through the simple closed surface S 

2 2 2

2 2 2 1x y z
a b c

+ + =  

 
 
Use the parametric grid ( , )θ φ , such that the displacement vector to any point on the 
ellipsoid is 
 sin cos , sin sin , cosa b cθ φ θ φ=rK θ

2

 
This grid is a generalisation of the spherical polar coordinate grid and covers the entire 
surface of the ellipsoid for 0 , 0θ π φ≤ ≤ ≤ < π . 
 
One can verify that sin cos , sin sin , cosx a y b z cθ φ θ φ= = = θ  does lie on the ellipsoid  

2 2 2

2 2 2 1x y z
a b c

+ + =   for all values of ( ),θ φ : 

 
2 2 2 2 2 2 2 2 2 2 2

2 2 2 2 2 2
sin cos sin sin cosx y z a b c

a b c a b c
θ φ θ φ

+ + = + +
θ  

( )2 2 2 2 2 2 2 2 2sin cos sin sin cos sin cos sin cosθ φ θ φ θ θ φ φ= + + = + + θ  
2 2sin cos 1 andθ θ θ= + = ∀ φ∀  

 
The tangent vectors along the coordinate curves φ  = constant and θ = constant are 

cos cos , cos sin , sind a b c
d

θ φ θ φ
θ

= −
rK θ    and 

sin sin , sin cos , 0d a b
d

θ φ θ φ
φ

= −
rK . 

 
 
The normal vector at every point on the ellipsoid follows: 

( )2 2 2

ˆ ˆ ˆ

cos cos cos sin sin
sin sin sin cos 0

sin cos , sin sin , sin cos cos sin

d d a b c
d d

a b

bc ac ab

θ φ θ φ θ
θ φ

θ φ θ φ

2θ φ θ φ θ θ φ

= = −
−

= +

i j k
r rN
K KJK
×

φ

 

(and this vector points away from the origin).    
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Example 2.5.4   (continued) 
 
On the ellipsoid, ˆ ˆcosz c θ= =F k

JK
k  

( ) 2cos sin cos sin cosc ab abcθ θ θ θ⇒ = =F N
JK JK
i θ  

 
The total flux of F  through the surface S is therefore 

JK

2
2 2

0 0 0 0
sin cos

S

d d abc d d
π π π π

θ φ θΦ = = =∫∫ ∫ ∫ ∫ ∫F dS F N
KK K K

i iw θ θ φ  

 
Let  u = cos θ,  then  du = –sin θ  dθ   and   θ = 0  ⇒   u = +1,  θ = π   ⇒   u = –1 

3
2

12 1 2

00 1 1
1

3S

uabc d u du abc
π π

φ φ
−

−

+ +

⎡ ⎤−⎡ ⎤⇒ = ⋅ − = ⎢ ⎥⎣ ⎦ ⎣ ⎦∫∫ ∫ ∫F dS
KK

iw  

( ) 1 12 0
3 3

abc π ⎛ ⎞= − + +⎜ ⎟
⎝ ⎠

⇒  

 
4

3
abcπ

Φ =  
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For vector fields   F(r),  
Line integral:   

C
∫F dr
K Ki

Surface integral: 

 ( ) ( ) l
S S S S

dS du dv du dv
u v
∂ ∂

= = = ± ×
∂ ∂∫∫ ∫∫ ∫∫ ∫∫ r rF r dS F r N F N F
K KKK K K K KK Ki i i i  

On a closed surface, take the sign such that N
K

 points outward.  
 
Some Common Parametric Nets  
 
1)  The circular plate ( ) ( )2 2 2

o ox x y y− + − ≤ a  in the plane z = zo.  
 Let the parameters be  r, θ  where   0  <  r  ≤  a ,   0  ≤  θ  <  2π  
 x  =  xo  +  r cos θ , y  =  yo  +  r sin θ , z  =  zo    

 

ˆ ˆ ˆ
ˆcos sin 0

sin cos 0
r

r
r r

θ θ
θ

θ θ

⎛ ⎞∂ ∂
= ± × = ± = ±⎜ ⎟∂ ∂⎝ ⎠ −

i j k
r rN k
K KK

 

 
 
2)  The circular cylinder ( ) ( )2 2 2

o ox x y y− + − = a  with zo  ≤  z  ≤  z1 .  
 Let the parameters be  z, θ  where zo  ≤  z  ≤  z1 ,  0  ≤  θ  <  2π   
 x  =  a cos θ , y  =  a sin θ , z  =  z    

( )
ˆ ˆ ˆ

ˆ ˆ0 0 1 cos sin
sin cos 0

a a
z

a a
θ θ

θ
θ θ

⎛ ⎞∂ ∂
= ± × = ± = ± − −⎜ ⎟∂ ∂⎝ ⎠ −

i j k
r rN i j
K KK

 

Outward normal:  ˆ ˆcos sina aθ θ= +N i j
K

 
 
 

3)  The frustrum of the circular cone ( ) ( )2 2
o o ow w a u u v v− = − + −

1

  where 
.  Let the parameters here be r, θ   where 1 2 oandw w w w w≤ ≤ ≤

1 o 2 o , 0 2w w w wr
a a

θ π− −
≤ ≤ ≤ <  

o ocos , sin , ox u u r y v v r z w w a rθ θ= = + = = + = = +  
ˆ ˆ ˆ

cos sin
sin cos 0

a
r

r r
θ θ

θ
θ θ

⎛ ⎞∂ ∂
= ± × = ±⎜ ⎟∂ ∂⎝ ⎠ −

i j k
r rN
K KK

 

( ) ( )ˆ ˆ ˆcos sina r a r rθ θ⎡ ⎤= ± − + − +⎣ ⎦i j k  

Outward normal:  ˆ ˆ ˆcos sinar ar rθ θ= + −N i j k
K
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4) The portion of the elliptic paraboloid 
( ) ( )2 22 2

o o o o 1 2withz z a x x b y y z z z z− = − + − ≤ ≤ ≤  
  Let the parameters here be r, θ   where  

1 o 2 o
2 2 2 2 2 2 2 2 , 0 2
cos sin cos sin

z z z zr
a b a b

θ π
θ θ θ θ
− −

≤ ≤ ≤ <
+ +

 

 x  =  xo + r cos θ , y  =  yo + r sin θ , z  =  zo +  r2 (a2 cos2θ  + b2 sin2θ)    

( )
( )

( ) ( )

2 2 2 2

2 2 2

2 2 2 2

ˆ ˆ ˆ

cos sin 2 cos sin

sin cos 2 sin cos

ˆ ˆ ˆ2 cos 2 sin

r a b
r

r r r b a

a r b r r

θ θ θ
θ

θ

θ θ θ

θ θ

⎛ ⎞∂ ∂
= ± × = ± +⎜ ⎟∂ ∂⎝ ⎠

− −

⎡ ⎤= ± − + − +⎣ ⎦

i j k
r rN

i j k

K KK

θ
 

 Outward normal:  ( ) ( )2 2 2 2ˆ ˆ ˆ2 cos 2 sina r b r rθ θ= +N i −j k
K

 
 
 
5)  The surface of the sphere  ( ) ( ) ( ) 2222 azzyyxx =−+−+− DDD .  
 Let the parameters here be  θ, φ   where πφπθ 20,0 <≤≤≤  
 x = xo + a sin θ cos φ ,    y = yo + a sin θ sin φ ,    z  =  zo + a cos θ  

( ) ( ) ( )2

ˆ ˆ ˆ

cos cos cos sin sin
sin sin sin cos 0

ˆ ˆ ˆsin sin cos sin sin cos

a a a
a a

a

θ φ θ φ
θ φ

θ φ θ φ

θ θ φ θ φ θ

⎛ ⎞∂ ∂
= ± × = ± −⎜ ⎟∂ ∂⎝ ⎠ −

⎡ ⎤= ± + +⎣ ⎦

i j
r rN

i j

K KK
θ

k

k

)

 

 Outward normal:  ( ) ( ) (2 ˆ ˆ ˆsin sin cos sin sin cosa θ θ φ θ φ θ⎡ ⎤= + +⎣ ⎦N i j k
K

 

 
 
6)  The part of the plane  ( ) ( ) ( ) 0=−+−+− DDD zzCyyBxxA  in the first octant with 

A, B, C > 0   and   Axo+ Byo+ Czo > 0. 
            Let the parameters be x, y   where  

0 ; 0Ax By Cz By Ax By Czx y
A B

+ + − + +
≤ ≤ ≤ ≤D D D D D D  

 

           

ˆ ˆ ˆ

ˆ ˆ ˆ1 0

0 1

A BA
Cx y C C

B
C

⎛ ⎞∂ ∂ ⎡ ⎤= ± × = ± − = ± + +⎜ ⎟ ⎢ ⎥∂ ∂ ⎣ ⎦⎝ ⎠
−

i j k
r rN i j k
K KK
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2.6    Theorems of Gauss and Stokes; Potential Functions 
 
Gauss’ Divergence Theorem  
 
Let  S  be a piecewise-smooth closed surface enclosing a volume  V  in ú3 and let  F  be a 
vector field.   Then  
the net flux of  F  out of  V  is N

S S

F dS=∫∫ ∫∫F dS
KK

iw w . 

But the divergence of  F  is a flux density, or an “outflow per unit volume” at a point. 
Integrating  div F  over the entire enclosed volume must match the net flux out through 
the boundary S of the volume V.    Gauss’ divergence theorem then follows:  
 

S V

dV=∫∫ ∫∫∫F dS F
KK K K

i iw ∇  

 
 
Example 2.6.1   (Example 2.5.4 repeated)      
 
Find the total flux Φ of the vector field ˆz=F k

JK
 through the simple closed surface S 

2 2 2

2 2 2 1x y z
a b c

+ + =  

 
 
Use Gauss’ Divergence Theorem:   div

S V

dV=∫∫ ∫∫∫F dS F
KK K

iw  

F
JK

 is differentiable everywhere in \ 3, so Gauss’ divergence theorem is valid. 
 

( )ˆdiv , , 0, 0, 0 0 1 1z z
x y z
∂ ∂ ∂

= = = + +
∂ ∂ ∂

F k
K K

i i∇ =  

 
4div 1

3V V

abcdV dV V π
⇒ = = =∫∫∫ ∫∫∫F

K
   – the volume of the ellipsoid ! 

 
Therefore 

4
3S

abcπ
Φ = =∫∫ F dS

KK
iw  

 
In fact, the flux of ˆz=F k

JK
 through any simple closed surface is just the volume enclosed 

by that surface. 
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Example 2.6.2  Archimedes’ Principle   
 
Gauss’ divergence theorem may be used to derive Archimedes’ principle for the buoyant 
force on a body totally immersed in a fluid of constant density ρ (independent of depth).  
Examine an elementary section of the surface S of the immersed body, at a depth  z < 0 
below the surface of the fluid:  

 
The pressure at any depth  z  is the weight of fluid per unit area from the column of fluid 
above that area.   Therefore 
 
pressure  =  p  =  g zρ−   gρ  is the weight of the column 
     – z is the height of the column (note z < 0). 
 
The normal vector N  to S is directed outward, but the hydrostatic force on the surface 
(due to the pressure p) acts inward.   The element of hydrostatic force on ΔS  is  

K

 
( ) ( ) ( ) ( ) ( )( ) ( )ˆ ˆpressure area direction g z S g z Sρ ρ× × = − Δ − = + ΔN N  

 
 
The element of buoyant force on ΔS is the component of the hydrostatic force in the 
direction of k (vertically upwards):  
 

( )ˆ ˆg z Sρ+ Δ N ki  

 
Define    and  . ˆg zρ=F k

K ˆ dS=dS N
K

Summing over all such elements ΔS, the total buoyant force on the immersed object is  
 

ˆ ˆ
S S V

g z dS dVρ = =∫∫ ∫∫ ∫∫∫k N F dS F
KK K

i iw w ∇
K
i    (by the Gauss Divergence Theorem) 
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Example 2.6.2   Archimedes’ Principle  (continued) 
 
 

( )ˆ , , 0, 0,
V V

g z dV g z dV
x y z

ρ ρ∂ ∂ ∂
= =

∂ ∂ ∂∫∫∫ ∫∫∫k
K
i i∇  

 

( )provided 0
V

g dV g
z

ρ ρ∂⎛ ⎞= ≡⎜ ⎟∂⎝ ⎠∫∫∫  

 
   =   weight of fluid displaced 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Therefore the total buoyant force on an object fully immersed in a fluid equals the weight 
of the fluid displaced by the immersed object (Archimedes’ principle). 
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Gauss’ Law   
 
A point charge  q  at the origin O  generates an electric field  

3 2
ˆ

4 4
q q

r rπε πε
= =E r

K
rK  

If  S  is a smooth simple closed surface not enclosing the charge, then the total flux 
through S is  
 

S V

=∫∫ ∫∫∫E dS E dV
KK K K

i iw ∇ (Gauss’ divergence theorem) 

 

But Example 1.4.1 showed that 3
1 0 0r
r

⎛ ⎞ = ∀ ≠⎜ ⎟
⎝ ⎠

r
K Ki∇ . 

 
Therefore . 0

S

=∫∫ E dS
KK

iw
 
There is no net outflow of electric flux through any closed surface not enclosing the 
source of the electrostatic field. 
 
 
 
 
If  S  does enclose the charge, then one cannot use Gauss’ divergence theorem, because  
 
   is undefined at the origin. E

K K
i∇

 
Remedy:  
Construct a surface S1 identical to S except for a small hole cut where a narrow tube T 
connects it to another surface S2, a sphere of radius a centre O and entirely inside S.    Let 

 (which is a simple closed surface), then  O is outside S* ! *
1S S T S= ∪ ∪ 2

 
Applying Gauss’ divergence theorem to S*,  
 

* *

0
S V

= =∫∫ ∫∫∫E dS E dV
KK K K

i iw ∇  

 

1 2

0
S T S

⇒ + + =∫∫ ∫∫ ∫∫E dS E dS E dS
K K KK K K

i i i  
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Gauss’ Law  (continued) 
 
As the tube  T  approaches zero thickness,  
 

0
T

→∫∫E dS
KK

i     and therefore    
1 2S S

→ −∫∫ ∫∫E dS E dS
K KK K

i i  

 
But  S 2  is a sphere, centre O, radius a. 
 
Using parameters ( , )θ φ  on the sphere,  
 

sin cos , sin sin , cosa θ φ θ φ θ=rK  
 

Finding ,
θ φ
∂ ∂
∂ ∂

r rK K
 as before leads to sina θ= ±N r

K K . 

 
But the “outward normal” to S 2 actually points towards O. 
 

sina θ⇒ = −N
K Kr    on the sphere  S 2  

 

and  34
q

aπε
=E

K Kr   everywhere on  S 2 . 

 
Also   2ˆa a= ⇒ =r r r rK K Ki
 

( )3 2
sin sinsin

4 4
q qa

a a 4
qθ θθ

πε πε πε
− −

⇒ = − = =E N r r r r
K K K K K Ki i i  

 
Recall that  l ldS N d d d dθ φ θ= = =dS N N N φ

JKK
 

2 2

2

0 0
sin

4
S S

q d dd d
π π

θ φθ θ
πε

φ −
= =∫∫ ∫∫ ∫ ∫E dS E N

KK K K
i i  

 

[ ] [ ] ( )( )2
0 0cos 1 1 2 0

4 4
q qπ πθ φ π q
πε πε
− −

= − ⋅ = + + − = −
ε

 

 

1 2S S

q
ε

⇒ = − =∫∫ ∫∫E dS E dS
K KK K

i i +  
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Gauss’ Law  (continued) 
 
 
But, as  ( )2 10 ,a S O S→ ⇒ → → S
 
The surface  S 1  looks more and more like the surface  S  as the tube T  collapses to a line 
and the sphere  S 2  collapses into a point at the origin.   Gauss’ law then follows. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Gauss’ law for the net flux through any smooth simple closed surface S, in the presence 
of a point charge q at the origin, then follows: 
 

if  encloses 

0 otherwiseS

q S O
ε

⎧
⎪= ⎨
⎪⎩

∫∫ E dS
KK

iw  
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Example 2.6.3   Poisson’s Equation  
 
The exact location of the enclosed charge is immaterial, provided it is somewhere inside 
the volume V enclosed by the surface S.   The charge therefore does not need to be a 
concentrated point charge, but can be spread out within the enclosed volume V.    Let the 
charge density be   ρ (x, y, z), then the total charge enclosed by S is  
 

V

q dρ= ∫∫∫ V  

 

Gauss’ law 
S

q
ε

⇒ =∫∫ E dS
KK

iw  

 
Apply Gauss’ divergence theorem to the left hand side, substitute for  q  on the right hand 
side and assume that the permittivity ε  is constant throughout the volume:  
 

V V

dV dVρ
ε

⇒ =∫∫∫ ∫∫∫E
K K
i∇  

 

0
V

dV Vρ
ε

⎛ ⎞⇒ − =⎜ ⎟
⎝ ⎠∫∫∫ E
K K
i∇ ∀  

 
This identity will hold for all volumes V  only if the integrand is zero everywhere. 
 
Poisson’s equation then follows: 
 

ρ
ε

=E
K K
i∇  

 
2 2andV V V V ρ

ε
= − = ∇ ⇒ ∇ = −E
K K K K

i∇ ∇ ∇  

 
This reduces to Laplace’s equation 2 0V∇ =  when 0ρ ≡ . 
 
 



ENGI 5432  2.6  Gauss, Stokes; Potential Functions Page 2.43 
 

 

Stokes’ Theorem  
 
Let F be a vector field acting parallel to the xy-plane.   Represent its Cartesian 
components by  1 2 1 2

ˆ ˆ , , 0f f f f= + =F i j
K

.   Then  

( ) 2 1

1 2

ˆ ˆ ˆ

ˆ

0

f f
x y z x

f f

∂ ∂ ∂ ∂ ∂
= ⇒ =

∂ ∂ ∂ ∂ ∂

i j k

F F
K KK K

i∇× ∇×
y

−k  

Green’s theorem can then be expressed in the form  
ˆ

C D

dA=∫ ∫∫F dr F k
K K KKi i> ∇×  

Now let us twist the simple closed curve C and its enclosed surface out of the xy-plane, so 
that the normal vector k is replaced by a more general normal vector N. 
If the surface S (that is bounded in ú3 by the simple closed curve C) can be represented 
by   z  =  f (x, y), then a normal vector at any point on S is  
 

, ,z z
x y
∂ ∂

= − −
∂ ∂

N 1
K

 

 
C is oriented coherently with respect to S if, as one travels along C with N pointing from 
one’s feet to one’s head, S is always on one’s left side.   The resulting generalization of 
Green’s theorem is Stokes’ theorem:  
 

l ( )curl
C S S

dS= =∫ ∫∫ ∫∫F dr F N F dS
KK K K KKi i> ∇× i  

 
This can be extended further, to a non-flat surface S with a non-constant normal vector N. 
 
 
Example 2.6.4  
 
Find the circulation of , , xyxyz xz e=F

K
 around C : the unit square in the xz-plane. 

 
 

 
Because of the right-hand rule, the positive orientation  
around the square is  OGHJ (the y axis is directed into  
the page). 
 
In the xz plane  y = 0   0, ,1xz⇒ =F

K
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Example 2.6.4   (continued) 
 
Computing the line integral around the four sides of the square: 
 

( ): 0, 0, 0 1 0, 0dOG t t
dt

= ≤ ≤ ⇒ =
rr ,1
KK  

 

and 0, 0,1 0, 0,1 0, 0,1 1d
dt

= ⇒ =
rF F =
KK K

i i  

 

[ ]
1 1

00
1 1

OG

dt t⇒ = = = −∫ ∫F dr
K Ki 0 1=

=K

 

 
In a similar way (Problem Set 6 Question 6), it can be shown that 
 

0 , 1 and 0
GH HJ JO

= = −∫ ∫ ∫F dr F dr F dr
K K KK Ki i i  

 
1 0 1 0 0

C

= + − + =⇒ ∫ F dr
K Kiv  

 
OR use Stokes’ theorem: 
 

On D  

ˆ ˆ ˆ

, 0,

0 1

x z
x y z

xz

∂ ∂ ∂
= = −

∂ ∂ ∂

i j k

F
K K
∇×  

 
ˆ dA=dA j

K
 

 
, 0, 0,1, 0 0x z dA⇒ = − =F dA

KK K
i i∇× dA  

 
0 0

D C

⇒ = ⇒∫∫ ∫F dA F dr
KK K K

=Ki iv∇×  

 
Note that this vector field  is not conservative, because F

K
≡F

K K
∇× 0 . 
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Domain   
 
A region Ω of ú3 is a domain if and only if 
1) For all points Po in Ω, there exists a sphere, centre Po, all of whose interior points 

are inside Ω; and 
2) For all points Po and P1 in Ω, there exists a piecewise smooth curve C, entirely in 

Ω, from Po to P1. 
A domain is simply connected if it “has no holes”. 
 
 
Example 2.6.5  Are these regions simply-connected domains? 
 
The interior of a sphere.  YES 
 
The interior of a torus.  NO 
 
The first octant.   YES 
 
 
On a simply-connected domain the following statements are either all true or all false:  
 
 F  is conservative.  
 F  ≡  ∇φ   
 ∇×F  ≡  0   
 )  -   independent of the path between the two points. ( ) (end start

C

P Pφ φ= −∫F dr
K Ki

K
 Ω  0

C

C= ∀ ⊂∫ F drKiv
 
 
Example 2.6.6  
 
Find a potential function φ (x, y, z)  for the vector field 2 , 2 , 2x y z=F

K
. 

 
 
First, check that a potential function exists at all: 

ˆ ˆ ˆ

curl

2 2 2
x y z
x y z

∂ ∂ ∂
= = =

∂ ∂ ∂

i j k

F F
KK K
∇× 0, 0, 0 = 0

K
 

Therefore  is conservative on \ . F
K 3
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Example 2.6.6    (continued) 
 

, ,
x y z
φ φ φφ ∂ ∂ ∂

⇒ = =
∂ ∂ ∂

F
K K

∇    

 

( )22 ,x x g y z
x
φ φ∂
= ⇒ = +

∂
 

 

( ) (20 2 ,g )y g y z y h z
y y
φ∂ ∂

⇒ = + = ⇒ = +
∂ ∂

 

 
( )2 2x y h zφ⇒ = + +  

 

( ) 20 0 2dh z h z z
z dz

cφ∂
⇒ = + + = ⇒ = +

∂
 

 
2 2 2x y zφ⇒ = + + + c  

 
We have a free choice for the value of the arbitrary constant c .   Choose  c = 0, then 
 

( ) 2 2 2 2, ,x y z x y z rφ = + + =  
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Maxwell’s Equations   (not examinable in this course) 
 
We have seen how Gauss’ and Stokes’ theorems have led to Poisson’s equation, relating 
the electric intensity vector  E  to the electric charge density ρ :  

ρ
ε

=E
K K
i∇  

Where the permittivity is constant, the corresponding equation for the electrical flux 
density  D  is one of Maxwell’s equations:   ρ=D

K K
i∇ . 

 
Another of Maxwell’s equations follows from the absence of isolated magnetic charges 
(no magnetic monopoles):  0= ⇒H

K K
i∇  0=B

K K
i∇ , where H is the magnetic 

intensity and B is the magnetic flux density. 
 
Faraday’s law, connecting electric intensity with the rate of change of magnetic flux 

density, is   
C S

t
∂

= −
∂∫ ∫∫E dr B dS

KK KKiv i .   Applying Stokes’ theorem to the left side 

produces  

t
∂

= −
∂
BE
KK K

∇×  

 
Ampère’s circuital law, 

C

I = ∫ H dl
K K
iv , leads to  d= +H J J

K K K K
∇× , where  

the current density is  Vσ ρ= =J E v
K K K ,  σ  is the conductivity, Vρ  is the volume charge 

density; and the displacement charge density is  d t
∂

=
∂
DJ
KK

 

 
The fourth Maxwell equation is  

t
∂

∇× = +
∂
DH J
KK K

 

 
The four Maxwell’s equations together allow the derivation of the equations of 
propagating electromagnetic waves. 
 
 
 
 
 
 
 

END OF CHAPTER 2 
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