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2.   Surface Integrals
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2.
Surface Integrals
This chapter introduces the theorems of Green, Gauss and Stokes.   Two different methods of integrating a function of two variables over a curved surface are developed.

The sections in this chapter are:

2.1   
Line Integrals

2.2   
Green’s Theorem

2.3   
Path Independence

2.4   
Surface Integrals - Projection Method

2.5   
Surface Integrals - Surface Method

2.6   
Theorems of Gauss and Stokes; Potential Functions

2.1   
Line Integrals
Two applications of line integrals are treated here:  the evaluation of work done on a particle as it travels along a curve in the presence of a [vector field] force; and the evaluation of the location of the centre of mass of a wire.

Work done:  

The work done by a force  F  in moving an elementary distance  (r  along a curve C is approximately the product of the component of the force in the direction of (r and the distance | (r | travelled: 
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Integrating along the curve C  yields the total work done by the force F in moving along the curve C: 
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Example 2.1.1  

Find the work done by 
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 in moving around the curve C (defined in parametric form by   x = cos t ,  y = sin t ,  z = 0 ,  0 ( t ( 2( ).
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Note that 
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 everywhere on the curve C, so that 
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   (the length of the path around the circle).

Also note that 
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The lesser curvature of the circular lines of force further away from the z axis is balanced exactly by the increased transverse force, so that curl F is the same in all of 
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We shall see later (Stokes’ theorem, page 2.40) that the work done is also the normal component of the curl integrated over the area enclosed by the closed curve C.   In this case 
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Example 2.1.1  (continued)

Example 2.1.2 

Find the work done by 
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 in moving around the curve C (defined in parametric form by   x = cos t ,  y = sin t ,  z = 0 ,  0 ( t ( 2( ).
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In this case, the force is orthogonal to the direction of motion at all times and no work is done.

If the initial and terminal points of a curve C  are identical and the curve meets itself nowhere else, then the curve is said to be a simple closed curve. 

Notation: 

When C is a simple closed curve, write 
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F  is a conservative vector field if and only if  
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  for all simple closed curves C  in the domain.

Be careful of where the endpoints are and of the order in which they appear (the orientation of the curve).   The identity 
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 leads to the result 
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( simple closed curves  C
Another Application of Line Integrals: 
The Mass of a Wire 

Let  C  be a segment  (t0 ( t ( t1)  of wire of line density  ( (x, y, z).   Then 
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First moments about the coordinate planes:
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The location 
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 of the centre of mass of the wire is 
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Example 2.1.3 

Find the mass and centre of mass of a wire C (described in parametric form by 

x = cos t ,   y = sin t ,  z = t ,    (( ( t ( ( )  of line density   ( = z2 .

Let  c = cos t ,   s = sin t .   




[The shape of the wire is 









 one revolution of a helix, 
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 aligned along the z axis,









 centre the origin.]
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x component:
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Integration by parts.
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Example 2.1.3   (continued)

y component:

For all integrable functions  f (t)  and for all constants  a  note that 
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z component:

t 3  is also an odd function
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Therefore   
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The centre of mass is therefore at 
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2.2   
Green’s Theorem
Some definitions: 

A curve  C  on (2 (defined in parametric form by 
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 a ( t ( b) is closed iff 
(x(a), y(a))  =  (x(b), y(b)) .

The curve is simple iff   
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  for all t1, t2 such that   a <  t1 <  t2 <  b ; 

(that is, the curve neither touches nor intersects itself, except possibly at the end points).

Example 2.2.1  

Two simple curves: 



       
open




closed
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Two non-simple curves:



       
open




closed
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Orientation of closed curves:

A closed curve C  has a positive orientation iff a point  r(t)  moves around C  in an anticlockwise sense as the value of the parameter t increases.

Example 2.2.2 

[image: image55.png]+ increasing t=a AND t=b

+ increasing





          Positive orientation

       Negative orientation

Let  D  be the finite region of (2 bounded by C.    When a particle moves along a curve with positive orientation, D is always to the left of the particle.

For a simple closed curve C enclosing a finite region D of (2 and for any vector function 
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 that is differentiable everywhere on C and everywhere in D, 

Green’s theorem is valid: 
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The region D is entirely in the xy-plane, so that the unit normal vector everywhere on D is k.   Let the differential vector  dA = dA k , then Green’s theorem can also be written as 
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and
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z component of 
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Green’s theorem is valid if there are no singularities in D.

Example 2.2.3  
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Green’s theorem is valid for curve  C1  but not for curve C2.

There is a singularity at the origin, which curve  C2  encloses.

Example 2.2.4 

For 
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xyxy

=+-

F

v

 and C as shown, evaluate 
[image: image65.wmf].

C

ò

Fdr

v

v

g

i


[image: image66.png]




[image: image67.wmf]CPQQRRP

=++

òòòò

FdrFdrFdrFdr

vvvv

vvvv

gggg

i


Example 2.2.4   (continued)
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Everywhere on the line segment from P to Q,  y = 2 – x   (and the parameter  t  is just  x)
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=   (0 – 0)  –  (8 – 4)  =  –4

Everywhere on the line segment from Q  to R,  y = 2 + x
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=  4 – 0  =  4

Everywhere on the line segment from R  to P,  y = 0
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=  2 – 2  =  0
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Example 2.2.4   (continued)

OR
use Green’s theorem!
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everywhere on D
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By Green’s theorem it then follows that
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Example 2.2.5 

Find the work done by the force 
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 in one circuit of the unit square.
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By Green’s theorem, 
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The region of integration is the square  0 < x < 1,  0 < y < 1 
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Therefore 
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The alternative method (using line integration instead of Green’s theorem) would involve four line integrals, each with different integrands!

2.3   
Path Independence
Gradient Vector Fields:  

If  
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(provided that the second partial derivatives are all continuous).

It therefore follows, for any closed curve C and twice differentiable potential function ( that
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Path Independence  

If  
[image: image92.wmf](
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, then  (  is a potential function for F.

Let the path C travel from point Po to point P1: 
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[chain rule]
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which is independent of the path  C  between the two points.

Therefore  
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[work done = potential difference]

Domain  

A region ( of 
[image: image97.wmf]2
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 is a domain if and only if

1)
For all points Po in (, there exists a circle, centre Po, all of whose interior points are inside (; and

2)
For all points Po and P1 in (, there exists a piecewise smooth curve C, entirely in (, from Po to P1.

Example 2.3.1

Are these domains?



     { (x, y) | y > 0 }


     { (x, y) | x ( 0 }
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If a domain is not specified, then, by default, it is assumed to be all of (2.

When a vector field F is defined on a simply connected domain (, these statements are all equivalent (that is, all of them are true or all of them are false):

· 
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   for some scalar field (  that is differentiable everywhere in (;

· F  is conservative;

· 
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 is path-independent (has the same value no matter which path within ( is chosen between the two endpoints, for any two endpoints in ();

· 
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 for all closed curves C lying entirely in (;

· 
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· 
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 everywhere in ( (so that the vector field F is irrotational).

There must be no singularities anywhere in the domain ( in order for the above set of equivalencies to be valid.

Example 2.3.2 

Evaluate 
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 where C  is any piecewise-smooth curve from (0, 0) to (1, 2).
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A potential function that has the correct first partial derivatives is  
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Therefore
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Example 2.3.3 (A Counterexample)

Evaluate 
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[image: image116.wmf]F

v

 is continuous everywhere except (0, 0)


[image: image117.wmf]ÞW

 is not simply connected.   [
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We cannot use Green’s theorem, because 
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 is not continuous everywhere inside C 

(there is a singularity at the origin).

Let  c = cos t  and  s = sin t  then
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)

22

2

22

0

00

1

C

scdtdtt

pp

p

éù

Þ=--=-=-

ëû

òò

ò

Fdr

v

v

g

i


Therefore 
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Note:  
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, but 

everywhere on 
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The problem is that the arbitrary constant  k  is ill-defined.

Example 2.3.3    (continued)

Let us explore the case when  k = 0.

Contour map of 
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We encounter a conflict in the value of the potential function ( .

Solution:  Change the domain 
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 to the simply connected domain 
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then the potential function 
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 can be well-defined, but no curve in 
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 can enclose the origin.
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