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4. Partial Differential Equations

Partial differential equations (PDEs) are equations involving functions of more than one
variable and their partial derivatives with respect to those variables.

Most (but not all) physical models in engineering that result in partial differential
equations are of at most second order and are often linear. (Some problems such as
elastic stresses and bending moments of a beam can be of fourth order). In this course
we shall have time to look at only a very small subset of second order linear partial
differential equations.

Sections in this Chapter:

4.1 Major Classifications of Common PDEs

4.2 The Wave Equation — d’ Alembert Solution
4.3  The Wave Equation — Vibrating Finite String
4.4 The Maximum-Minimum Principle

4.5  The Heat Equation
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4.1 Major Classifications of Common PDEs

A general second order linear partial differential equation in two Cartesian variables can

be written as
2 2

0
A(x,y)a—xbzt + B(x,y)

2
+ C(x,y)a—bé = f[x,y,u,a—u,a—u)
0x 0y oy ox 0y
Three main types arise, based on the value of D = B*—4A4C (a discriminant):
Hyperbolic, wherever (x, y) is such that D > 0;
Parabolic, wherever (x, y) is such that D =0;
Elliptic, wherever (x, y) is such that D <0.

Among the most important partial differential equations in engineering are:

2
. u
The wave equation: — = ¢ V’u
t
‘u ‘u
or its one-dimensional special case —- = c’ — [which is hyperbolic everywhere]

(where u is the displacement and c is the speed of the wave);

The heat (or diffusion) equation: ,upz—L; = KV’u + VK+Vu

a one-dimensional special case of which is

2
% _ K o [which is parabolic everywhere]

up X"
(where u 1s the temperature, u is the specific heat of the medium, p is the density and K is
the thermal conductivity);

The potential (or Laplace’s) equation: Vu =0
2 2

a special case of which is 2 th + S lﬁ = 0 [which is elliptic everywhere]
X y

The complete solution of a PDE requires additional information, in the form of initial
conditions (values of the dependent variable and its first partial derivatives at ¢=0),
boundary conditions (values of the dependent variable on the boundary of the domain) or
some combination of these conditions.
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4.2 d’Alembert Solution

Example 4.2.1

Show that
flx+ct) + f(x—ct

(e - Llare) s Saa)
is a solution to the wave equation

Oy 1%y _

ox’ ¢t or

oy .. 0
with initial conditions y(x, 0) = f(x) and > y(x,1) =0
t=0
for any twice differentiable function f(x).
+
Let r = x +ct andszx—ct,theny(r,s):M u
r

and 9
9y _9yor  0y0s _ l((f’(r)+0)><1 + (0+f'(s))><l), x/\ x/\

ox  or Ox os Ox 2

%y 00y o[ 0dy|or 0 (0y)os 1, ., )
i el I Bl e e Bl el 1 |
ox’ ax(éxj ar[ﬁx ox | o5\ ox ) ox 2(f (r)x1 + f"(s)x1),

8y oyor oyads 1, ., ,
a—); = 8_3’;6_: + a—);a—j = 5((f (r)+0)xc + (0+f (s))x(—c)),

o’y 0 (dy)\or o(oy|os 1 , )
o 5?(&}& " as[at or 2(cf (r)xe = e f"(s)x(=c)),

S 92 Loy Ly k) - () s () = o,
ox’ ct or 2 2c
f(x+ct) + f(x—ct)
2
twice differentiable functions f'(x). This is part of the d’ Alembert solution.

is a solution to the wave equation for all

Therefore y(x,t) =
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Example 4.2.1 (continued)

This d’ Alembert solution satisfies the initial displacement condition:

y(x,O) _ f(x+0) ;— f(x—O) _ f(x)

cf'(x+ct) - cf'(x—ct)| ~ cf'(x) = cf'(x) B
t=0 2 ‘ t=0 2
The d’ Alembert solution therefore satisfies both initial conditions.

Also %y(x, t)
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A more general d’Alembert solution to the wave equation for an infinitely long string is

(i) = f(x+ct) ; f(x—ct) N i xxj:g(”)du

This satisfies the wave equation

2 2
a—f=cza—{ for —o < x <o and >0
ot 0x
and
Initial configuration of string: y(x,0) = f(x) for xeR
and
.. . oy
Initial speed of string: = = g(x) for xeR
6t (x’o)

for any twice differentiable functions f(x) and g(x).

Physically, this represents two identical waves, moving with speed ¢ in opposite
directions along the string.

| : .y iy
Proof that y(x,7) = 2—'[ g(u)du satisfies both initial conditions:
CJ x—ct
x+ct

y(x,t) = %ij_ct g(u)du = y(x,O) = %ijxg(u)du =0

Using a Leibnitz differentiation of the integral:

x+ct
Z—); = i(g(xjtct)-g(erct) - g(x—ct)-g(x—ct) + Ix_ct ag(u)duj
1 g(x+ct) + g(x—ct)
= Z(cg(x+ct) + cg(x—ct) + 0) = 2
0 x+0)+ g(x-0
a_)’ _ g(x+0) + g(x-0) = g(x)
P 2
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Example 4.2.2

An elastic string of infinite length is displaced into the form y = cos 7 x/2 on [-1, 1]
only (and y = 0 elsewhere) and is released from rest. Find the displacement y(x, f) at all
locations on the string x € R and at all subsequent times (¢ > 0).

For this solution to the wave equation we have initial conditions

X
cos| — -1<x<1
y(x0) = f(¥) = (2] ( )
0 (otherwise)
and
D (5,0) = g(x) = 0
ot
The d’ Alembert solution is
— xX+ct _
y(xt) = f(x+ct) + f(x—ct) . LJ‘ o () — f(x+et) + f(x—ct) Lo
2 2¢ J x—ct 2
cos M (-l-ct<x<l-ct)
where f(x+ct) = 2
0 (otherwise)
cos M (-l+ct<x<l+ct)
and  f(x—ct) = 2
0 (otherwise)

We therefore obtain two waves, each of the form of a single half-period of a cosine
function, moving apart from a superposed state at x = 0 at speed c¢ in opposite directions.

See the web page "www.engr.mun.ca/~ggeorge/5432/demos/ex422 _html" for an
animation of this solution.



http://www.engr.mun.ca/%7Eggeorge/5432/demos/ex422.html
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Example 4.2.2 (continued)

Some snapshots of the solution are shown here:

ct=00 ct=05

3 2 1 2 3 3 2 1 2 3
H H
ct=07 ct=0.85
14 1]
0.84 ned
3 1 2 3 3 1 2 3
H H
ct=1.0 ct=2.0
14 1]
0.8 0.6
0.5
¥
0.4
0.2
3 3 3 2 R 1 2 3
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A more general case of a d’Alembert solution arises for the homogeneous PDE with

constant coefficients
0u 0u 0u
A + B C

ox> oxoy a7 =0
y y

The characteristic (or auxiliary) equation for this PDE is

AV +BA+C =0
This leads to the complementary function (which is also the general solution for this
homogeneous PDE)

u(x,y) = fi(y+ax) + fi(y+a.x),

where

B —B+~D

A =
24

nd A,

~B-D .
24

and D = B*—44C
and f, f, are arbitrary twice-differentiable functions of their arguments.
A1 and 4, are the roots (or eigenvalues) of the characteristic equation.

In the event of equal roots, the solution changes to
u(x,y) = fl(y+/1x) + h(x,y)fz(er/’Lx)
where h(x, y) is any non-trivial linear function of x and/or y (except y + Ax).

The wave equation is a special case with y =, 4=1,B=0, C=—-1/c* and A =+ 1/c.
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Example 4.2.3

(a)
(b)

2 2 2

Ju 3 0u 01 _y
0x 0x 0y 10}
u(x, 0) = —x*
u,(x,0) =0

Classify the partial differential equation.
Find the value of u at (x,y) = (0, 1).

(a)

(b)

Compare this PDE to the standard form

2 2 2
A8u+36u ou

ox oxor o 0
y ¥

A=1, B=-3, C=2 = D=9-4x2=1>0

Therefore the PDE is hyperbolic everywhere.

+3i\ﬁ_

A= 1 or 2

The complementary function (and general solution) is Chain rule
ulx,y) = f(y +x) + gly+2x) diff*n

uy(xay) =f'y+x) + g'(yv+2x) (x+.y:'

Initial conditions: } "'.3"’\

,0) = + g(2x) = 1
Zl(l)é) Sx) + g2x) = —x @ X

uy(x, 0) = f'(x) + g'2x) = 0 2

%(1) = f'(x) + 2g'(2x) = —2x 3)

B -02 = gly="2x = gk==x

= g(x) = —%x2+k = g(y+2x) = —%(y+2x)2+k




ENGI 5432 4.2 Wave Equation - d’ Alembert Solution Page 4.10

Example 4.2.3 (continued)
Also (1) = f(x) = x> — g2x) = =" + BQx)*—k = xX*—k
= f+x) = @+x)’ —k

Therefore u(x,y) = f(y +x) + g(y + 2x)
=@+x) —k-(+2x)*/2 + k

= %(2);2+4xy+2x2—y2—4xy—4x2) = %(yz_zxz)

The complete solution is therefore u (x, y) = %( y? - 2x2)

= u(0,1) = %(12—02) =

”Nl»—t

[It is easy (though tedious) to confirm that u(x,y) = %( y? —2x2) satisfies the partial

2 2 2
differential equation 0 th -3 Ou + 2 0 L; = 0 together with both initial conditions
ox 0x 0y oy

u(x, 0) = —x* and uy(x,0) = 0.]

[Also note that the arbitrary constants of integration for f/ and g cancelled each other
out. This cancellation happens generally for this method of d’ Alembert solution. ]




Example 4.2.4

Find the complete solution to
o’u o’u o%u

6— -5 +— =14,
oX oxaoy 0y
ux,0) = 2x+1,

uy(x, 0) = 4 —6x.

This PDE is non-homogeneous.

For the particular solution, we require a function such that the combination of second
partial derivatives resolves to the constant 14. It is reasonable to try a quadratic function
of x and y as our particular solution.

Try up = ax’ + bxy + cy?

e = 2ax+hby and % = bx + 2¢cy
y

2 2 2
d u2'° =2a, U _ph and 2 UZP =2
OX ox oy oy
2 2 2
~ g% 50U | Ol o0 5hioc - 14

ox? oxoy oy’
We have one condition on three constants, two of which are therefore a free choice.

Choose b=0 and c=4a,then 14a=14 = c=a=1
Therefore a particular solutionis ~ u = x* +y?

Complementary function:
A=6, B=-5, C=1 => D=25-4x6=1>0
Therefore the PDE is hyperbolic everywhere.
12 3 2
The complementary function is
Ue (X, y) = f(y+%x) + g(y+%x)

and the general solution is
u(xy) = f(y+%x) + g(y+%x) + X2 +y?
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Example 4.2.4 (continued)

u(x,y) = f(y+%x) + g(y+%x) + xt+y?
ou

= 5 = f'(y+%x) + g'(y+%x) + 2y

Imposing the two boundary conditions:

u(x,O) = f(%x) + g(%x) +x? = 2x+1

e))
and
uy(x,O) = f'(%x) + g’(%x) + 0 =4-6x 2)
%(1) = %f’(%x) + %g'(%x) +2x =2 3)
(2)-2x3) = %f’(%x) —4x =4 —-6x -4

= f'(%x) = —6x = —18<%x) = f'(x) = —18x
= f(x) = 9% +k

M = g(dx) =2x+1-x" - f(Ix) = 2x+1-2" + 9[%} —k
= g(x) =4x +1-k

But

u(x,y) = f(y+%X) + g(y+%x) + xt+y?

= u(x,y) = —9(y+%x)2 +k+4(y+%x)+1—k+x2+y2

[again the arbitrary constants cancel - they can be omitted safely.]

= —9y? —6xy—x + 4y + 2x + 1 + x*+)°

Therefore the complete solution is

u(x,y) =1+ 2x + 4y—6xy —-8)°
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Example 4.2.5

Find the complete solution to
2 2 2
8L;+2 ou +51/;:O’
ox oxdy 0Oy
u=0 on x=0,
u= x> on y=1.

A=1, B=2, C=1 = D=4-4x1 =0

Therefore the PDE is parabolic everywhere.

1 =

2+40
T=—1or—1

The complementary function (and general solution) is

u(x,y) = f(y=x) + h(xy)g(r=x)
where /A(x, y) is any convenient non-trivial linear function of (x, y) except a multiple of
(y —x). Choosing, arbitrarily, A(x, y) = x,

u(x,y) = f(y—x) +xg(y—x)
Imposing the boundary conditions:

u0,y) =0 = f(»)+0 =20
Therefore the function f is identically zero, for any argument including (y — x).

We now have u(x,y) = xg(yv—x).
ux,) =x* = xgl-x)=x = gl-x)=x
Let z= 1—-x,then x=1-z and g(z) = 1-z = gkx)=1-x

Therefore

ulx,y) = xgy—x) = x(1-(y—x)

The complete solution is

u(x,y) = x(x—y+1)




ENGI 5432 4.2 Wave Equation - d’ Alembert Solution

Page 4.14

Two-dimensional Laplace Equation

o’u o’u
+ [
ox* 0y’

A=C=1, B=0 == D=0-4<0

This PDE is elliptic everywhere.

_0++-4

2

A .

The general solution is

u(x,y) = f(y—Jjx) + g(y+jx)

where f and g are any twice-differentiable functions.

A function £ (x, y) is harmonic if and only if V*f=0 everywhere inside a domain Q.

Example 4.2.6

X . .
Is u = ¢"siny harmonic on R*?

a_ e*siny and Z—u = e’ cosy

ox
2 2
= SZ = e*siny and ZL; = —e’siny
x
2 2
= Vzuzgz+gz:exsiny—exsiny:O V(x,y)
x y

X . . . 2
Therefore yes, u = ¢ siny is harmonic on R".
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4.3 The Wave Equation — Vibrating Finite String

The wave equation is

If u(x, t) is the vertical displacement of a point at location x on a vibrating string at time ¢,
then the governing PDE is

ot? ox’

If u(x, y, t) is the vertical displacement of a point at location (x, y) on a vibrating
membrane at time ¢, then the governing PDE is

o'u ,(0°u  Ou
2 = ¢ 7 T 23
ot 0x oy

or, in plane polar coordinates (r, #), (appropriate for a circular drum),
o’u , [ 0*u 1 Ou 1 d’u
2 = a2t Tt T,
ot or ror r- o6

Example 4.3.1

An elastic string of length L is fixed at both ends (x = 0 and x = L). The string is
displaced into the form y = f(x) and is released from rest. Find the displacement y(x, ?)
at all locations on the string (0 <x < L) and at all subsequent times (¢ > 0).

The boundary value problem for the displacement function y(x, ¢) is:

2 2
8_2/2026_)2/ for 0O<x<L and >0
ot 0x
Both ends fixed for all time: (0,7 = y(L,t) = 0 for t>0
Initial configuration of string: y(x,0) = f(x) for 0<x<L

L
ot (x,O)

String released from rest: for 0<x<1L
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Example 4.3.1 (continued)

Separation of Variables (or Fourier Method)
Attempt a solution of the form y(x, £) = X(x) 7(¢)
Substitute y(x, f) = X(x) 7(¢) into the PDE:

8t( ()7 (1)) = Zaa;(X(X)T(f)) = X‘ZZT =c’ i;x)z(r

lldT ldX
T df de

The left hand side of this equation is a function of 7 only. At any instant ¢ it must have
the same value at all values of x. Therefore the right hand side, which is a function of x
only, must at any one instant have that same value at all values of x.

By a similar argument, the right hand side of this equation is a function of x only. At
any location x it must have the same value at all times #. Therefore the left hand side,
which is a function of ¢ only, must at any one location have that same value at all times .

Thus both sides of this differential equation must be the same absolute constant, which
we shall represent for now by —«.

1 d*°X d*X
Vv .2 = 2
X dx dx
The general solution of this simple second order ODE is a combination of two
exponential functions of x if £ <0, is a linear function of x if k=0 and is a combination

of sine and cosine functions of x if £ > 0.

+ kX =0

It is not possible for both ends of the string to be fixed for all time in the first two cases
(unless we admit the trivial solution y(x,#) =0, a string that never moves from its
equilibrium position). Therefore k>0. Replace k by A ? (guaranteed positive for all
real 4 except 4A=0).

We now have the pair of ODEs

2 2
dX+/12X:O and T

2 dtZ

+ T =0

dx
The general solutions are

X(x) = Acos(Ax) + Bsin(Ax) and T(¢) = Ccos(Act) + Dsin(Act)

respectively, where A, B, C and D are arbitrary constants.




ENGI 5432 4.3 Wave Equation - Finite String Page 4.17

Example 4.3.1 (continued)

Consider the boundary conditions:
y(0,/) = X(0)T(t) =0 Vi=0

For a non-trivial solution, this requires X (0)=0 = 4=0.

y(L,it) = X(L)T(¢) =0 Vi=0 = X(L)=0

nix

= Bsin(AL)=0 = 4, =7 (neZ)

We now have a solution only for a discrete set of eigenvalues 4,, with corresponding
eigenfunctions

X, (x) = sin(n;rxj, (n=1,23..)

Consider the initial condition:

%(x’o = X(N)T'(0)=0 vV = T'(0)=0

T'(t) = =CAcsin(Act) + DAccos(Act) = T'(0)=Dic=0 = D=0
Therefore our complete solution for y(x, ) is now some linear combination of

() = X, (T (1) = Cysin 272 eos| 2| (n = 123..)

L

There is one condition remaining to be satisfied.
The initial configuration of the string is: y(x, 0) =f(x) for 0 <x <L.

= y(x,0) = nz G, Sin(m]ixj = f(x)

This is precisely the Fourier sine series expansion of f(x) on [0, L] !
From Fourier series theory (Chapter 3), the coefficients C, are

C, = %J:f(u)sin(%jdu

Therefore our complete solution is

16 = 5 5[ [ rtopin o o5 o 5
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Example 4.3.1 (continued)

This solution is valid for any initial displacement function f(x) that is continuous with a
piece-wise continuous derivative on [0, L] with f(0)=f(L)=0.

If the initial displacement is itself sinusoidal ( f (x) = asin (m[i—xj for some neN j,

then the complete solution is a single term from the infinite series,

. [ nTx nrct
y(x,t) = asm( ; jcos( j

L
1.1’
Suppose that the initial configuration is triangular: % i
X (O <x< %L)

p(x.0) = /(x) = 1

L—x (jL <x< L) : -

0 L L x
2
Then the Fourier sine coefficients are D 7
L
C, = EJ f(u)sin(wjdu
" LJo L T
L2 7L i % \ s L
= 2J. usin(mjdu + —J (L—u)sin(—]du +
LJo L LJin L \
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Example 4.3.1 (continued)
G {5)o(5) () -0
000 ({5)ol) (5]

= 4L sin(ﬂ But sin Ly 0 (n even)
2 2 2

(n) +1  (nodd)
sin(@] = (_1)k+1 , (k € N)
Therefore sum over the odd integer values of n only (n = 2k —1).
c - 4L : (_1)k+1
((2¢-1)s)

and

L

2k—1)7rct

V) =¥ (-1)*! Sin[(zk—l)ﬂxjco{(

L

|

See the web page "www.engr.mun.ca/~ggeorge/5432/demos/ex431.html" for an

animation of this solution.



http://www.engr.mun.ca/%7Eggeorge/5432/demos/ex431.html
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Example 4.3.1 (continued)

Some snapshots of the solution are shown here:

0.6

0.44

0.29

0.24

041

-0.6-

0.6

0.44

0.29

0.24

0.4

-0.6-

067

0.44

0.2

ct=0

02 04 x 06 0&
ot = 0.50

0.2 0.4 x 0.B 0.8
ct=1

02 04 06 08

ct=025

0.6

0.4+

0.2

0.21

041

0.6-

ct =060
067

0.4

0.2

0.2

0.4

06"

These graphs were generated from the Fourier
series, truncated after the fifth non-zero term.
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Example 4.3.2

An elastic string of length L is fixed at both ends (x = 0 and x = L). The string is initially
in its equilibrium state [y(x, 0) =0 for all x] and is released with the initial velocity

?9_); = g(x). Find the displacement y(x, 1) at all locations on the string (0 <x <L)
9

and at all subsequent times (¢ > 0).

The boundary value problem for the displacement function y(x, ¢) is:

2 2
6_{2026_)2/ for 0O<x<L and >0
ot 0x
Both ends fixed for all time: y0,7) = y(L,f) = 0 for t>0
Initial configuration of string: y(x,0) =0 for 0<x<L
. e ) oy
String released with initial velocity: — =g(x) for0<x<L

g
As before, attempt a solution by the method of the separation of variables.

Substitute y(x, f) = X(x) 7(¢) into the PDE:

o ol a’T X
E(X(X)T(t)) = cz ax2 (X(X)T(t)) = X dlz = cz dx2 T

Again, each side must be a negative constant.
1 d&°T  1d°X )
S T o = A
cT dt X dx

We now have the pair of ODEs

2 2
d)z( + 2*°X =0 and d{
dx dt

The general solutions are
X(x) = Acos(Ax) + Bsin(Ax) and T(t) = Ccos(Act) + Dsin(Act)
respectively, where A, B, C and D are arbitrary constants.

+ T =0
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Example 4.3.2 (continued)

Consider the boundary conditions:
y(0,/) = X(0)T(t) =0 Vi=0

For a non-trivial solution, this requires X (0)=0 = 4=0.

y(L,it) = X(L)T(¢) =0 Vi=0 = X(L)=0

= Bsin(1L)=0 = 2, =%, (neZ)

We now have a solution only for a discrete set of eigenvalues 4,, with corresponding
eigenfunctions

X, (x) = sin(n;rxj, (n=1,23..)

and

b (1) = X, (¥)T, (1) = sin[%qu (1), (n=123.)

So far, the solution has been identical to Example 4.3.1.

Consider the initial condition y(x, 0) = O
y(x,0)=0 = X(x)T(O)=O Vx = T(O)=0
The initial value problem for 7(¢) is now

T" + 1°¢*)T =0, T(O)=O, where /1=%

the solution to which is

T,(1) = Cnsin(mzmj, (neN)
Our eigenfunctions for y are now

yo(0) = X, (3)T, (1) = C, sm(”’;"]sin(”’;”j, (neN)
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Example 4.3.2 (continued)

Differentiate term by term and impose the initial velocity condition:
oy o~ nre) . (nrx
— = C,| — |sin = g(x
o (x,0) "Zl H(Lj ( L j g()

which is just the Fourier sine series expansion for the function g(x).
The coefficients of the expansion are

nrc 2 L . (nru
C,— ==\ g(u)sin - du

L LJo

which leads to the complete solution

y(xt) = %ni:,l%“‘:g(M)sin[%)du]sin(ﬂfjsin(mzaj

This solution is valid for any initial velocity function g(x) that is continuous with a
piece-wise continuous derivative on [0, L] with g(0) = g(L) = 0.

The solutions for Examples 4.3.1 and 4.3.2 may be superposed.

Let yi(x, t) be the solution for initial displacement f'(x) and zero initial velocity.
Let ys(x, t) be the solution for zero initial displacement and initial velocity g(x).

Then y(x, 1) = yi(x, t) + ya(x, t) satisfies the wave equation
(the sum of any two solutions of a linear homogeneous PDE is also a solution),
and satisfies the boundary conditions y(0, ) = w(L,t) = 0.

y(x, 0) = yi(x, 0) + ya(x,0) = f(x) +0,
which satisfies the condition for initial displacement f(x).

Yt (X, O) = yll‘(xa O) + yZZ(xa O) =0 +g(X),
which satisfies the condition for initial velocity g(x).

Therefore the sum of the two solutions is the complete solution for initial displacement
f(x) and initial velocity g(x):

o) = F 5[ 252 2 5]
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4.4 The Maximum-Minimum Principle

Let Q be some finite domain on which a function u(x, y) and its second derivatives are

defined. Let Q be the union of the domain with its boundary.
Let m and M be the minimum and maximum values respectively of u# on the boundary
of the domain.

If V’24>0 in Q, then u is subharmonic and
u(F)<M or u(F)=M  VF in Q

If V24<0 in Q, then u is superharmonic and
u(F)>m or u(¥)=m  VF in Q

If V2u=0 in ©Q, then u is harmonic (both subharmonic and superharmonic) and
u is either constant on Q or m <u <M everywhere on Q.

Example 4.4.1

Vu=0 in Q;x2+y2<1 and u(x,y)=1 onC: x2+y2= 1.
Find u(x,y) on Q.

. . . uwx,y
u is harmonicon Q = min, (u) < (o(n Q)} < max,(u)

But mine(u) = maxc(u) = 1

Therefore u(X,y) = 1 everywhere in Q.
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Example 4.4.2
V=0 in the square domain Q: 2 <x<+2, 2<y<+2.

On the boundary C, on the left and right edges (x = £2), u(x, y) =4 —)7,
while on the top and bottom edges (y = £2), u(x,y) = X’ —4.

Find bounds on the value of u(x, y) inside the domain Q.

For-2<y<+2, 0< 4—)*<4.

For2<x<+2, -4< x>~ 4<0.

Therefore, on the boundary C of the domain Q, —4 < u(x, y) <+4 so that
m=-4 and M=+4.

u(x, y) is harmonic (because V>u = 0).

Therefore, everywhere in QQ,
—4 <u(x,y) <+4

Note:
u(x, y) =x>—)" is consistent with the boundary condition and
2 2 2
Ho_ax-0, Eoo-zy = hop Shop o2
ox oy 0x oy 0x
2 2
Ox oy

Contours of constant values of u are hyperbolas.

A contour map illustrates that —4 < u(x, y) <-+4 within the domain is indeed true.

u=0-1 -4 u=-4 -1 0
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4.5 The Heat Equation

For a material of constant density p, constant specific heat 4 and constant thermal
conductivity K, the partial differential equation governing the temperature u at any
location (x, y, z) and any time ¢ is

u_ kV*u , where k:£

ot up

Example 4.5.1

Heat is conducted along a thin homogeneous bar extending from x =0 to x = L. There is
no heat loss from the sides of the bar. The two ends of the bar are maintained at
temperatures 7 (at x = 0) and 73 (at x = L). The initial temperature throughout the bar at
the cross-section x is f'(x).

Find the temperature at any point in the bar at any subsequent time.

The partial differential equation governing the temperature u(x, ¢) in the bar is

2
2—1: = kg—bzl [Parabolic]
X

together with the boundary conditions
w0,t) =Ty and u(L,?) = T,
and the initial condition

u(x, 0) = f(x)

[Note that if an end of the bar is insulated, instead of being maintained at a constant

temperature, then the boundary condition changes to %(O,Z) =0 or Z—L;(L,t) =0.]

Attempt a solution by the method of separation of variables.
u(x, 1) = X(x) 7(7)

= XT'=kX'T :szizc

T X
Again, when a function of ¢ only equals a function of x only, both functions must equal
the same absolute constant. Unfortunately, the two boundary conditions cannot both be
satisfied unless 77 = 7, = 0. Therefore we need to treat this more general case as a

perturbation of the simpler (7 = 7, = 0) case.
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Example 4.5.1 (continued)

Let u(x, ) = v(x, 1) + g(x)
Substitute this into the PDE:

L ra() = £ 2

Cra) = Lok 2 )]

This is the standard heat PDE for v if we choose g such that g"(x) =0.
g(x) must therefore be a linear function of x.

We want the perturbation function g(x) to be such that
w0, =T, wl,t) =T,
and
v(0,1) = v(L,f) =0
Therefore g(x) must be the linear function for which g(0) = 7; and g(L) = T>.

It follows that
T -T
e = (B0 o

and we now have the simpler problem

E Ox?

together with the boundary conditions
v(0,7) = v(L,t) =0
and the initial condition

v(x, 0) = f(x) — g(x)
Now try separation of variables on v(x, ?) :
v, 1) = X(x) T(2)
i x

= XT' =kX'T = —— -
kT X

But v(0,7) = wL,) =0 = X(0)=XL) =0

This requires ¢ to be a negative constant, say —1°.
The solution is very similar to that for the wave equation on a finite string with fixed ends

(section 4.3). The eigenvalues are 4 = % and the corresponding eigenfunctions are

any non-zero constant multiples of

X, (x) = sin(?j
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Example 4.5.1 (continued)

The ODE for 7(#) becomes

whose general solution is

Therefore

2.2
i (50) = 510 = 22 o221

If the initial temperature distribution f (x) — g(x) is a simple multiple of sin (%) for

2
. . . . [ nmx n 'kt
some integer n, then the solution for v is just v(x,7) = ¢, sin (Tj exp(— I ] :

Otherwise, we must attempt a superposition of solutions.

n’ ikt
nz_:l ¢, sin exp| — i

such that v(x,0) i;:c sm( j: £(%) - g(x).

L
The Fourier sine series coefficients are ¢, = % j ( f(z) - g(z ))sm(nzzj dz
0

so that the complete solution for v(x, ¢) is

o0 L 2 2
v(x,t) = %nzl[jo (f(z) - Tz;Tl 7 — ﬂ}sin(”—?}dz}sin(%mjexp(_ n szzj

and the complete solution for u(x, 7) is

u(x,t) = v(x,t) + (%}c + 1

Note how this solution can be partitioned into a transient part v(x, ¢) (which decays to
zero as ¢ increases) and a steady-state part g(x) which is the limiting value that the
temperature distribution approaches.
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Example 4.5.1 (continued)

As a specific example, let k=9, T =100, 7, =200, L=2 and
£(x) = 145x* — 240x + 100 , (for which £(0) = 100, £(2) =200 and f(x) >0 Vx).
Then g(x) = wx +100 = 50x + 100

The Fourier sine series coefficients are

2
¢y = j ((14522—24Oz+100)—(502+100))sin(n7ﬂjdz
0 D f
e | nrz 22z sin (222
= ¢, = 145 (z —2z)s1n - dz 5
0 AN
+
N\
2z—2 _( ir)ms(n:é?.?)
"
\-
AN

2
- —z=2 2 _(_) i (?E_FTZ)
2 16 } ( nrz j nT 2
cos

= ¢, = 145

L 1z=0

o
=
Il
—
S
(9,

1
7 N\

N
—
[\
|
N
A —

=

B
+

—_
S [—
N | o
N—

w
N
(@]
S
w2
7\
=
NSRS
N
N
/'\m
S '~
S
N—

DO et
N
©
=
7\
=
NN
N
N
| |
[N
Ul
[\S)

The complete solution is

© (1-(=1)" 2 2
u(x,1) = 50x + 100 — 220 ZL (3 ) ]sin(";”jexp[_ o’z t}

/A n 4

Some snapshots of the temperature distribution (from the tenth partial sum) from the
Maple file at "www.engr.mun.ca/~ggeorge/5432/demos/ex451 .mws" are shown
on the next page.
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Example 4.5.1 (continued)

2001
150
f 1001

50

t = 0.000

&0

2001
150
100

50

] 02040608 1

X

t =0.050

12 14 16 18 2

50

] 02040608 1

X

12 1416 18 2

t=0.010

&0

2001
150
f 1001

50

] 02040608 1 12141618 2

X

t=0.100

o

&0

] 02040608 1 12141618 2

X

The steady state distribution is nearly attained in much less than a second!

END OF CHAPTER 4
END OF ENGI. 5432!
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