5. Suggestions for the Formula Sheets

Below are some suggestions for many more formulae than can be placed easily on both
sides of the two standard 8%"x11" sheets of paper for the final examination. It is
strongly recommended that students compose their own formula sheets, to suit each
individual’s needs.

1.1 Vectors

The component of vector U in the direction of vector v is u, = UsV = ucosé

i(U-\7) = dlfl. D-dv and

dt dt dt

d, du _ Y _du dv
—(OxV) = —xV + Ux— = —Ux— + Ox—
dt d dt dt

The distance along a curve between two points whose parameter values are toand t; is

t=t, b Y 4 2 2 2
SICEERCE
0 dt dt dt

L = j ds = [Bq - []9F
dt dt
t=t, A

The unit tangent at any point on a curve is

~ dr |dr| dr
Codt [dt]  ds
The unit principal normal at any point on a curve is
~ dT _dT |dT
“ P8 T d [dt
The unit binormal is
B = TxN
L dar : _ dar ds _ ~
Velocity is v(t) = -, speedis v(t) = |v(t) = Tl =g @4 V=T

The acceleration [vector] is

_ dv  d’r d’x d’y d’z ~ ~
) =4 e " <dt2 "t dt2> =T+ an
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1.2 Lines of Force

The lines of force r associated with a vector field F are given by
T o T ikRs) = (kds=) |[HoW_®
ds ds f, f, f

1.3 The Gradient Vector

The directional derivative of f in the direction of the unit vector U is Daf = Vil

ﬂzvf.d?’ where vf = ﬂ’ﬂ'...’ﬂ and ﬁz %'%’...'%
dt dt 0X, 0X, OXp dt dt = dt dt

Plane with normal vector n = (A, B, C) passing through point ro = (Xo, Yo, Zo) :
Aef = Nef, = Ax+By+Cz+D =0, where D =—(Ax, +By, +Cz,)
Line with direction vector v = (vy, v, v3) passing through point ro = (Xo, Yo, Zo) :
- XX _YYe 272

r =" +tv = —= (exceptwhena v; =0)
Vl VZ V3

Tangent planeto f(x,y,z)=c at P(Xo, Yo, Zo) IS Nel = Nel,, where n = Vf‘P .

1.4 Divergence and Curl

VxVf = curl grad f
V-V xF = divcurl F

<
I
o Ol

Laplacian of V = VV = V«VV) = divgrad V
ou ov

If v(xy) = u(x,y)f + v(x, y)] and divv = PRt 0, then the stream function
X oy
w (X, y) exists such that Z—V/:v and Z—Vlz—u. Streamlines are y/ (X, y)=c.
X y

15 Conversions between Coordinate Systems

To convert a vector expressed in Cartesian components v,i+v,j+v,K into the

equivalent vector expressed in cylindrical polar coordinates v, p+ Vy@ +V, K, express

the Cartesian components vy, Vy, v, in terms of (p,¢, z) using
X = pcos¢, y = psing, z = z; thenevaluate
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1.5  Conversions between Coordinate Systems (continued)

v, cosg sing O0||v,
Vy | =|—sing cosg OV,
v, 0 0 1|y,

Use the inverse matrix [= transpose] to transform back to Cartesian coordinates.
To convert a vector expressed in Cartesian components v,i+v,j+v,k into the

equivalent vector expressed in spherical polar coordinates v, F +Vv,0 + V@, express the
Cartesian components Vy, Vy, V, in terms of (r,6,¢) using
X =rsindcosg, y =rsindsing, z =rcosd; thenevaluate

v, singcosg sin@dsing coséd || v,
Vg | =|cos@cosg cosdsing —sind ||v,
v, —sing coS ¢ 0 v,

Use the inverse matrix [= transpose] to transform back to Cartesian coordinates.

1.6 Basis Vectors in Other Coordinate Systems

Cylindrical Polar:
d . d¢- N - ~
—p =— r = +zk
i ¢ Yoy
d » do . = .- S
—h = — — V = e
dt¢ prl = PP+ppp+1e,
9% -0
dt
Spherical Polar:
ar = d—eé + sin@d—¢¢?
dt dt dt
a6 = —d—ef' + cost—¢¢3
dt dt dt

d—¢ = —(sinH?+cos¢9 é)d—¢
dt dt

r=rft = V=1Ff+r0@+rsindg¢
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1.7  Gradient Operator in Other Coordinate Systems
Gradient operator V = &0 &% 0 &0
h ou, h,ou, h,ou,
Gradient vV GV BN &N
h ou, h,ou, h,ou,
_ h, h, f h, h f h, f
Divergence Ve - 1 o(h 1)+8( s N 2)+8(hl of2)
h h, h, ou, ou, ou,
hlél h2 é2 hSéS
Curl VxE =t o 9o 9
hhh, | du, ou, ou,
hl fl h2 f2 h3 f3
Laplacian vy = L[ 2(hh V) 0 (V) 0 (b ov
hhh {oul\ h ou ) ou,\ h, ou,) ou,\ h, ou,
dV = hyh,hg dugduydu; = _oxy.2) du, du,dus,
o(ug,uz,ug)
ox oy oz
ou; oup  oug
_ | X y a du;du,duy
ou, 0Ou, Ou,
oXx oy oz
duz Ouyz Ouj
Cartesian: hy =hy =h, = 1.
Cylindrical polar: h,=h,=1, h,=p.

Spherical polar:

hy =1, hy=r, hy=rsing.
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2.1 Line Integrals

U]

The location ( > of the centre of mass of a wire is ( > = where

_ ] 4y 2

I\/I=I pT’Edt, mzj Edt and ﬁz \/%j (—j (dzj :
o dt Wt dt t) \at) Lt

2.2 Green’s Theorem

For a simple closed curve C enclosing a finite region D of R? and for any vector function
<f f that is differentiable everywhere on C and everywhere in D,

H( 5

2.3 Path Independence
When a vector field F is defined on a simply connected domain Q, these statements are
all equivalent (that is, all of them are true or all of them are false):

= F=Vg¢ forsome scalar field ¢ that is differentiable everywhere in Q;

= F isconservative;
Iﬁod? is path-independent (has the same value no matter which path

within Q is chosen between the two endpoints, for any two endpoints in
Q);

. Iﬁ-dl“ = Pog — Psare (fOr any two endpoints in Q);
Cc

" c_ﬁrz-dr = 0 for all closed curves C lying entirely in Q;

C
. of afl everywhere in Q; and
ox oy
= VxF = 0 everywhere in Q (so that the vector field F is irrotational).

There must be no singularities anywhere in the domain Q in order for the above set of
equivalencies to be valid.

2.4 Surface Integrals - Projection Method

For surfaces z=f(x,y), N = —ﬂ,—ﬂ,ﬂ and
ox oy

Hg (F)ds = H \/(azj [2—;] +1 dA  (where dA = dxdy)
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25 Surface Integrals - Surface Method

or or

With a coordinate grid (u, v) on the surface S, ”g dS = ”- r —><—d dv

The total flux of a vector field F through a surface S is
© - [[ras - [[FRas - [[F-S0xS auan
£ £ ; ou ov

Some Common Parametric Nets

1) The circular plate (X=X, )2 +(y- yo)2 < a’ in the plane z = z,.
Let the parametersbe r, # where 0 <r <a, 0< @< 2x

X=X +rcosé, y=Y,+rsing, z=12
i i k
N = (ﬁxﬂj = +| cos® sin@ O0|==+rk
or a9 —rsind rcoséd O

2) The circular cylinder (x—xo)2 + (y—yo)2 =a’withz, <z<175.

Let the parameters be z, & wherez, <z <271, 0< < 27
X =acosf,y =asinf, z =1z

o i i kK
Nz Moy o 0 1 =i(—acosef—asin9])
0z 00 ;
-asin@ acos@d 0

Outward normal: N = acos@i + asing j

3) The frustrum of the circular cone w—w, = a\/ (u=u)’ +(v=-v,)" where
w, <ws<w, and w,<w, . Letthe parameters hereber, & where
WWo o cWo=W  gcpaog

a a

X=U=uU, +rcosd, y=v =y, +rsingd, z

w

W, + ar

i ik

N = (gxg—;] = +| cosd sind a
r

-rsingd rcosd O

= i[(—arcos@)f + (—arsing) j + rk}

Outward normal: N = arcosé@i + ar sin6?j ~rk
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4) The portion of the elliptic paraboloid
z-7, = a’(x-x) +b*(y-y,) with z,<z<z<7
Let the parameters here be r, & where

A Z, -1
\/2 L0 grg\/z —~—< —— , 0<0<2rx
acos-@+b°sin“ g a“cos @ +bsin“ @

X = Xo+rcosf, y=yo+rsin€, z=z+ r’(a®cos’d +b’sin’f)
i i K
No=+| %) 4l coso  sing 2r(azcoszé’+bzsin26’)
or o0

—rsind rcosd 2r? (b2 —az)sin 0 cos o
= J_r[(—ZazrzcosH)i + (~2b%r?sin 6?)] +r R}

Outward normal: N = (ZaZI’ZCOS@)i + (2b%r?sin 0)] —rk

5)  The surface of the sphere (x—x,)* +(y—-vy.)* +(z-z.)* =a?.
Let the parameters here be 6, ¢ where 0<0<7z, 0<¢<2x
X=X, +asinfdcos ¢, y=y,+asinfsing, z = z,+acosf

i k

_ or or y . .
N =+ %xa— = +|acosdcosgp acos@dsing -asind

¢ —asin@sing asinécosg 0

= +a’sind [(sin@cow)? + (sin@sin ¢5)] + (cos@)ﬂ
Outward normal: N = a’siné [(sin&’cos¢)? + (sin@sin ¢)] + (cos@)lz}

6)  The partof the plane A(x—x,)+B(y—-y,)+C(z~2z,)=0 in the first octant with
A, B,C>0 and Ax,+By,+Cz,>0.
Let the parameters be x, y where

Ax +By, +Cz —By .

0<y< Ax + By +Cz,

0<x<

o
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2.6 Theorems of Gauss and Stokes; Potential Functions

Gauss’ divergence theorem: @ﬁ-dé = ” V+F dV on a simply-connected domain.
S V

Gauss’ law for the net flux through any smooth simple closed surface S, in the presence

~ — if S encloses O

of a point charge q, is: E«dS =1 ¢
0 otherwise

Stokes’ theorem: gglf-dl" = ”Vxlf-ﬁ ds = H(curl F)-dS

C S S
On a simply-connected domain Q the following statements are either all true or all false:
" F is conservative.
. F=Vg
] VxF =0
. Fedt = ¢(P,y) — ¢(Py.) - independent of the path between the two points.

C
. gSﬁ-dr -0 VCcQ
C

¢ is the potential function for F, so that a¢ 8(/5 a¢ = <Fl, F,, F3>.
ox oy’ oz

3. Fourier Series

The Fourier series of f(x) on the interval (-L, L) is

=%, a, cos( ) + bnsin(@]
2 o1 L L

L
a, =%I f(x)cos(nil_xjdx, (n=0,1,23,...)

=_J‘ sm( jdx (n=12,3,...)

If f(x) iseven (f(—x) = +f(x) for all x), then b, =0 for all n, leaving a Fourier cosine
series (and perhaps a constant term) only for f (x).

where

and

If f(x) isodd (f (~x) = —f (x) for all x), then a, = 0 for all n, leaving a Fourier sine
series only for f (X).
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4.1 Major Classifications of Common PDEs

o’u o°u o°u ou ou
A(Xx,y)— + B(X, + C(x, = f| x,y,u—,—
( y)6x2 ( y)axay ( y)ay2 E i ayJ
D = B?-4AC
Hyperbolic, wherever (X, y) is such that D > 0;
Parabolic, wherever (x, y) is such that D = 0;
Elliptic, wherever (x, y) is such that D < 0.

4.2 d’Alembert Solution

o°u o°u o°u

A— + B + C = r(Xx,
ox’ OX 0y oy’ (x¥)
AE.: Al> +BA+C =0
C.F. uc (X, y) = f(y+/11x) + g(y+/12x), [except when D = 0]
where A = -8-Vb and A, = -8+VD and D = B*-4AC
2A 2A

When D=0, uc(xy) = f(y+Ax)+h(x,y)g(y+4x),
where h(x, y) is a linear function that is neither zero nor a multiple of (y + /Ix) .
P.S.: if RHS = n" order polynomial in x and y, then try an (n+2)™ order polynomial.

4.3 The Wave Equation — Vibrating Finite String

oy _ 0% : _ _
W:C Py for 0O<x<L and t>0 with y(0,t) = y(L,t) = 0 for t>0,
y(x,0) = f(x) for 0<x<L and ¥ =g(x) for0<x<L

at (X,O)

Substitute y(x,t) = X(x) T(t) into the PDE. ... leads, via Fourier series, to
- nzu Nz X nzct
j f(u)sin[—jdu sin( jcos( j
0 L L L
L
2 -1 . (nzu . (nzx)_. (nzct
+ — ) — u)sin| —— [du |sin| —— |sin
zcn;nuog() (L) ] (Lj ( Lj
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4.4 The Maximum-Minimum Principle

Let m and M be the minimum and maximum values respectively of u on the boundary
of the domain Q.

If V2u>0 in Q, then u is subharmonic and u(F)<M or u(r)=M VT in Q
If V2u<0 in Q, then uissuperharmonicand u(F)>m or u(f)=m  Vr in Q

If V2u=0 in Q, then u is harmonic (both subharmonic and superharmonic) and
u is either constanton Q or m<u<M everywhere on Q.

45 The Heat Equation

2
If the temperature u(x, t) in a bar is Z—l: =k % together with the boundary conditions
X

u0,t) = T, and u(L,t) = T, and the initial condition u(x, 0) = f(x), then

u(x,t) = X(X) T(t) ... leadsto  u(xt) = v(x,t) + [TZEE]X + T, where

(x1) - %z[ [0 Tj(Tjd](%jp[ )
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