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1. Ordinary Differential Equations

An equation involving a function of one independent variable and the
derivative(s) of that function is an ordinary differential equation (ODE).

The highest order derivative present determines the order of the ODE and the
power to which that highest order derivative appears is the degree of the ODE. A
general n™ order ODE is

F(x,y,y',y”,...,y(”)) =0
Example 1.00.1

2 2
sz + x(g—ij = x°y is asecond order first degree ODE.

Example 1.00.2

2
x(ﬂj = x’y is a first order second degree ODE.

dx

In this course we will usually consider first degree ODEs of first or second order only.
The topics in this chapter are treated briefly, because it is assumed that graduate students
will have seen this material during their undergraduate years.

Sections in this Chapter:

1.01 First Order ODEs - Separation of Variables
1.02 Exact First Order ODEs

1.03 Integrating Factor

1.04 First Order Linear ODEs [+ Integration by Parts]
1.05 Bernoulli ODEs

1.06 Second Order Homogeneous Linear ODEs
1.07 Variation of Parameters

1.08 Method of Undetermined Coefficients

1.09 Laplace Transforms

1.10 Series Solutions of ODESs

1.11 The Gamma Function

1.12 Bessel and Legendre ODEs
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1.01 First Order ODEs - Separation of Variables

Example 1.01.1

A particle falls under gravity from rest through a viscous medium such that the drag force
is proportional to the square of the speed. Find the speed v(t) at anytime t>0 and
find the terminal speed V..

Velocity Forces The forces acting on the ball bearing are its weight downwards
byl and friction upwards. Let m be the mass of the object,
l g~ 9.81 m s be the gravitational acceleration due to gravity.
v Newton’s second law of motion states
g F = i(mv) _m
dt dt
The ODE governing the motion follows:
m% =mg — bv? (Net force = weight — drag force)
In standard form,
(bv*—mg)dt + (m) dv =0
| — —_
M(t.v) N(t.v)
) ) type separable.
f (v)only const.

Whenever a first order ODE can be rewritten in the form
f(x)dx = g(y) dy

the method of separation of variables may be used.

The ODE in this problem may be separated into the form

M gv=dt = m dv = dt

N 2
mg — bv _b(_n:)EJ+sz
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Example 1.01.1 (continued)
= dvm = —Bjdt
Vz_ig m
b

I Zdv = = —Bjdt where k2 = M9
ve —k m b

Partial fractions:

1 A B

(v—k)(v+k) v-k " v+k

Using the “cover-up rule”:

1 1 1 1
= 2 2 " oblv_k  vailk
v —k 2k \v—k v+k

= (In(v-K) - In(v+k)) = -2+ €,

- |n("_kj N R S
v+k m

where p=2—kb:2—bm:2—
m mY b m

v—k —pt+C _
= —— =g "2 = AeTP
v+k

— v-k=vAeM + kae™

= vl -Ae™ =k@ +Ae™
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Example 1.01.1

(continued)

General solution:

k(1 + Ae™™)
V =
( ) 1 _ Ae—pt

Initial condition: vi0) =0

k(1+ A)
= 0= = A=-1

1-A
Complete solution:
1-¢ M mg bg
v(t) = k , where k = ,[— and =2 |—
(1) 1+ e P b P
Terminal speed V...
v, = limv(t) = k20 - = M9
towo 1+0 b
The terminal speed can also be found directly from the ODE.
At terminal speed, the acceleration is zero, so that the ODE simplifies to
mﬂ:0=mg—bvw2 :>v002:m
dt b
Graph of speed against time:
ALV
1 =
0 e

[For a 90 kg personinair, b~1kgm' — k ~ 30ms ' ~ 100 km/h.
v(t) is approximately linear at first, but air resistance builds quickly.
One accelerates to within 10 km/h of terminal velocity very fast, in just a few seconds.]
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1.02 Exact First Order ODEs

If x and y are related implicitly by the equation u(x, y) = ¢ (constant), then the chain rule
for differentiation leads to the ODE
du:a—udx+a—udy:0
0X oy
Therefore, for the functions M(x, y) and N(X, y) in the first order ODE
Mdx + Ndy = 0,
if a potential function u(x, y) exists such that

M :8_u and N:a—u,

0X oy
then u(x, y) = c isthe general solution to the ODE and the ODE is said to be exact.

Note that, for nearly all functions of interest, Clairault’s theorem results in the identity
ou o
oy OX ~ ox oy
This leads to a simple test to determine whether or not an ODE is exact:

— =— = Mdx + Ndy =0 isexact

A separable first order ODE is also exact (after suitable rearrangement).

f(x)g(y)dx + h(x)k(y)dy = 0 [separable]

- (i a2

— —
M N

M _oy- N

oy oX

However, the converse is false. One counter-example will suffice.
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Example 1.02.1

The ODE
(yeX—x)dx + e*dy = 0
IS exact,
{M:yex—x, N = e* m:e’(:ﬂ}
oy 0X
but not separable.

To find the general solution, we seek a potential function u(x, y) such that

ou
— =ye’—x and U _ o
0X oy
It does not take long to discover that
u=ye*-1ix* =c

possesses the correct partial derivatives and is therefore the general solution of the ODE.

The solution may be expressed in explicit form as
y = (c + %xz)e_X

Example 1.02.2

Isthe ODE  2ydx + xdy = 0 exact?

M=2y = ﬂ:2, Nex = N_. M
oy oX oy

Therefore NO, the ODE is not exact.
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Example 1.02.3

Is the ODE
A(2X2n+1yn+1 dx + X2n+2yn dy) -0

(where n is any constant and A is any non-zero constant) exact?
Find the general solution.

M — 2AX2n+lyn+l - aé_M — 2AX2n+l(n+1) yn
y
N = Ax2"™2yn o ON _ A(2n+2)x2'“+1yn _ oM
oX oy

Therefore YES, the ODE is exact (for any n and for any non-zero A).

To find the general solution, we seek a potential function u(x, y) such that

ou _ 2AXZHL L ang ou _ Ax2M2yn
oX oy
2n+2,,n+1
fnZ -1ten u=22"Y  _¢
n+1

If n=-1then u= Aln(xzy) =

In either case, the general solution simplifiesto x?y = ¢ or, in explicit form,

'

Note that the exact ODE in example 1.02.3 is just the non-exact ODE of example 1.02.2

multiplied by the factor I(x, y) = Ax2”+ly”. The ODEs are therefore equivalent and

_ AX2n+1 n

share the same general solution.  The function 1(x,y) y' is an integrating

factor for the ODE of example 1.02.2.

Also note that the integrating factor is not unique. In this case, any two distinct values of
n generate two distinct integrating factors that both convert the non-exact ODE into an
exact form. However, we need to guard against introducing a spurious singular solution
y =0.
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1.03 Integrating Factor

Occasionally it is possible to transform a non-exact first order ODE into exact form,
using an integrating factor 1 (x, y).
Suppose that
Pdx + Qdy = 0
IS not exact, but that
IPdx + 1Qdy = 0
IS exact.

Then, using the product rule,

M _ o, aP

M=1-P = | —
oy oy oy

and
oN ol 0Q
N =1-: > —=—0Q + 11—
Q oX 8XQ 0X

From the exactness condition

ﬂ_ﬂ:}al ol _I.aP 0Q
oy oX oX oy

This is an awkward partial differential equation. Where it is valid, we may use the
assumption that the integrating factor is a function of x alone, to simplify its derivation.

TRy
dx oy oX

1dl 1(oP 0Q
= S— === - =
oy oX

Thi tion is valid only if 1= | 2 = 92| = R(x)|is a function of x onl
|SaSSlJmp 10N IS vall Onyl Q ay ax IS a TUNncuon or xon Y.

If so, then the integrating factor is |(X) = ej

[Note that the arbitrary constant of integration can be omitted safely.] Then

u= IM dx = jeIR(X)dX-P(X, y)dx, etc.
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Returning to

M _oN o, (0P 2Q
oy oX 00X oy oy OX

If we assume that the integrating factor is a function of y alone, then

o_d_'.p=|(@_@j - 1d'_P(@_£j

dy oy OX | dy OX oy
Thi ion is valid |'fl-@—@—8(y) function of y onl
is assumption is valid only i Plax  dy a function of y only.
N . Jsa
If so, then the integrating factor is |(Y) =€ and

u—J-Ndy—J‘I xydy, etc.

Example 1.03.1 (Example 1.02.2 again)

Find the general solution of the ODE
2ydx + xdy = 0

- _ 1ok _oQy_2-1_1_
P=2y, Q=x = Q[ay éxj . , R(x)

Therefore an integrating factor that is a function of x only does exist.
x) dx
_[R(x)dx:jldx:lnx = I(x):eIR() =™ = x
X
Multiplying the original ODE by 1(x), we obtain the exact ODE
2xydx + x“dy = 0

To find the general solution, we seek a potential function u(x, y) such that

a—u:2xy and a_u: G
oy

OX
This leads quickly to the general solution, u = x2y = ¢ or, in explicit form,
c
y=—7%

X
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Example 1.03.2

Find the general solution of the ODE

2xydx + (2x*+3y)dy = 0

Test for exactness:

P=2xy, Q=2x"+3y :Q:ZX @:4x il
oy 0X oy
Therefore the ODE is not exact.

Assume an integrating factor of the form 1 (x):

1foP Q) _ 2X2_ ax # R(X)

Q \oy oX 2X° +3y

Therefore an integrating factor that is a function of x only does not exist.

Assume an integrating factor of the form 1 (y):

1(6Q 6Pj CAx-2x 1

_—= - — | = =—=R
P | ox oy 2Xy y (y)

Therefore an integrating factor that is a function of y only does exist.

JROYEY = [Lay =y = 1) - T gy

Multiplying the original ODE by 1 (y), we obtain the exact ODE
2xy?dx + (2x%y+3y9)dy = 0

To find the general solution, we seek a potential function u(x, y) such that
a = 2X y2 and a = 2x2y + 3y2
oX oy

This leads quickly to the general solution, u = X’y +y¥=c¢ or, in explicit form,
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1.04 FEirst Order Linear ODEs [ + Integration by Parts]

A special case of a first order ODE is the linear ODE:

% +P(X)y = R(X)

[or, in some cases,

Rearranging the first ODE into standard form,
(PX)y—-R(x))dx + 1dy =0

Written in the standard exact form with a simple integrating factor in place, the ODE
becomes
1) (PX)y—R(X) dx + 1(x)dy = 0

Compare this with the exact ODE
du = M(x,y)dx + N(x,y)dy = 0

The exactness condition M _ N = 1(x)-P(x) = ar = a = Ide
oy oX dx I
Let h(x) = jp dx, then IN1(x) = h(x)

and the integrating factor is

1(x) = eh(X), where h(x) = J.P(x) dx (:> % = P(x)}.

The ODE becomes the exact form
g" (Py—R) dx + ehdy =0
Seek a potential function u(x, y) such that

ou h ou h

—=¢e (hy-R) and —=¢e

0X ( y ) oy

= u:yeh—J.ehRdx:C = yeh:jehRdx+C
dy

Therefore the general solution of ol P(x)y = R(x)is
X

y(x) = e_h(x)(jeh(x)R(x) dx + Cj, where h(x) = jP(x) dx
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Example 1.04.1

Solve the ordinary differential equation
dy 2
— +—-y=1
dx X y

This ODE is linear, with P(x) = 2 and R(x) = 1.
X

h = J'de - J‘édx = 2Inx = In(x?)

The integrating factor is therefore e =x?.
3

J.ehR dx = Iledx = X?

_h h 1(x3
= y=e¢ eRdx + C|=—=|—+C
x| 3

The general solution is therefore

Alternative methods:

The ODE is not separable.

Re-arrange the ODE into the form

(2y—-x)dx + xdy = 0

P=2y—-x and Q=x = Py:2, szl;thy

This ODE is not exact.

Py-Qx 2-1 1
Q X X

= J‘Rdx:J.%dx:lnx = 1(x) = x
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Example 1.04.1 (continued)

The exact ODE is therefore
(2xy —x¥) dx + x*dy = 0

3
a—u=2xy—x2 and a—u=x2 = U= ng_X_ =c
O0X oy 3

The same explicit solution then follows:

y:

OR

Try to re-write the ODE in another exact form %(u(x, y)) = v(x):

dy 2 zdy 2 d 2 2
—— 4+ -y = = X—=—+2Xy = X => —(X = X
dx xy dx d dX( y)

= X —X—3+c = y=242
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Examples of Integration by Parts

The method of integration by parts will be required in the next example of a first order
linear ODE (Example 1.04.4). There are three main cases for integration by parts:

Example 1.04.2

Integrate x3e”* with respect to x.

Therefore Ix3ex dx = e* (x3 —3x% 46X — 6) +C

This is an example where the table stops at a zero in the left column.

Example 1.04.3

Integrate In x with respect to x.

= X

X INTEG.
Therefore jlnxdx = Xlnx — Jlidx = Xlnx — jldx =XIhx = x+C
X

= Ilnxdx =x(lnx -1) + C

This is an example where the table stops at a row that can be integrated easily.

The third case, where the table stops at a row that is a multiple of the original integrand,
follows in Example 1.04.4.
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Example 1.04.4

An electrical circuit that contains a resistor, R = 8 Q (ohm), an inductor, L = 0.02
millihenry, and an applied emf, E(t) = 2 cos (5t), is governed by the differential equation

di o _ dE
L.:f: + Ri T
Determine the current at any time t > 0, if initially there is a current of 1 ampere in the
circuit.

First note that the inductance L = 2x10™ H is very small. The ODE is therefore not very
different from

0+Ri = dE/dt
which has the immediate solution

i = (1/R) dE/dt = (1/8)%(-10 sin 5t)
We therefore anticipate that i =—(5/4) sin 5t will be a good approximation to the exact
solution.

Substituting all values (R =8, L=2x 10, E=2cos 5t = E'=-10 sin 5t) into the
ODE vyields

@ 4+ 4x107 i = —5x%10° sin 5

it
which is a linear first order ODE.

P(t) =400 000 and R(t)=-500000sin5t = h = j P dt = 400000t

— integrating factor = e" = #0000
= [e* Rdt = -500000[2*™ sin 5¢ g
Integration by parts of the general case j e sinbx dx : D 7
e™* sin bx
~
_I_
ae® el cos bx
. b

a‘e® — + —>_L2 sin bx
b

2
= Ieaxsinbx dx = [—%eax coshx + bizeaxsinbx} - J-S—zeaxsinbx dx

2
= b—lz[eax(—bcosbx + asin bx)] -~ z—zjeax sinbx dx
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Example 1.04.4 (continued)

2
= [1+27jjeax sinbx dx = biz[eax(asin bx — bcoshx)]

= jeaxsinbx dx = = b2[e""x(asinbx - bcosbx)] +C
+

Set a=400000, b=5 and x=t:

= IehRdt — 500000400000t (400000sin5t - 5cos5t)
400000° +5

The general solution is

i(t) =e™ (IehRdt + C)

= i(t) = Ae400000t _ wMOOOOOSinSt—ScosSt)
4000007 +25

But i(0) =1

=4 500000 ;)

4000002 +25
— A = (400 000%+ 25 — 2 500 000) / (400 000 + 25)

Therefore the complete solution is [exactly]

159997500025 e *09%%0t _ 500000(400000sin5t — 5cos5t)

I(®) 160000000025

To an excellent approximation, this complete solution is
. _ 5 .
= i(t) ~ 00000t _ ZsmSt

After only a few microseconds, the transient term is negligible.
The complete solution is then, to an excellent approximation,

5.
12 - = 5S¢
ilt) = 45111

as before.
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1.05 Bernoulli ODEs

The first order linear ODE is a special case of the Bernoulli ODE
dy n
— + P(x)y = R(x
5 T P()y = R(x)y

If n=0 then the ODE is linear.

If n=1 then the ODE is separable.

yl—n

1-n

For any other value of n, the change of variables u = will convert the Bernoulli

ODE fory into a linear ODE for u.

du_dudy Lonody by edu
dx dydx 1-n dx dx dx
The ODE transforms to

du
dx
We therefore obtain the linear ODE for u:

&+ (@-n)P())u = R(Y

y”i—i + P(x)y = R(x)y" =

whose solution is

ill__: = u(x) = e_h(X)(J'eh(X)R(x) dx + C), where h(x) = (1—n)jP(x) dx

together with the singular solution y = 0 in the cases where n > 0.
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Example 1.05.1

Find the general solution of the logistic population model

dy 2
— =ay-b
dx y y

where a, b are positive constants.

The Bernoulli equation is

s (ca)y = (o)’

with P = —a, R =-h, n = 2.

h = (1—n)Ide = (—1)j—adx = ax

Integrating factor e = e2*
JehR dx = Ieax(—b) dx = —Deax (Note that a > 0)
a
1
Y _u-= e_h(jehRdx + C) = e_""x(—geax + C]
-1 a
- y- 2
b — Ae™
Note that
a a . a
0)=— = A=b-—— and limy = —
V) =574 y(0) Y T p

Also y = 0 is a solution to the original ODE that is not included in the above solution
for any finite value of the arbitrary constant A.

The general solution is

[Note that the initial condition is not
positive and there is a discontinuity in

y at x = £Ing if A>b istrue]

il et
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1.06 Second Order Homogeneous Linear ODEs

The general second order linear ordinary differential equation with constant real
coefficients may be written in the form
d’y  dy

oz TP Ty = r(x)

If, in addition, the right-side function r(x) is identically zero, then the ODE is said to be
homogeneous. Otherwise it is inhomogeneous.

The most general possible solution y. to the homogeneous ODE y” + py +qy =0
is called the complementary function.
A solution y, to the inhomogeneous ODE y" + py' + qy = r(x) is called the

particular solution.

The linearity of the ODE leads to the following two properties:

Any linear combination of two solutions to the homogeneous ODE is another solution to
the homogeneous ODE; and

The sum of any solution to the homogeneous ODE and a particular solution is another
solution to the inhomogeneous ODE.

It can be shown that the following is a valid method for obtaining the complementary
function:

From the ODE y" + py' + qy = r(x) form the auxiliary equation (or “characteristic
equation”)

A2+ pl+q=0
If the roots 4,, 4, of this quadratic equation are distinct, then a basis for the entire set of

. . X A
possible complementary functions is {y,, y,} = {e " e ZX}.

If the roots are not real (and therefore form a complex conjugate pair a * bj ), then the
basis can be expressed instead as the equivalent real set {eax cosbx, e**sin bx} .

If the roots are equal (and therefore real), then a basis for the entire set of possible
complementary functions is {y,, y,} = {e’“, xe’lx}.
The complementary function, in the form that captures all possibilities, is then

Yo = Ay, + By,
where A and B are arbitrary constants.
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Example 1.06.1

A simple unforced mass-spring system (with damping coefficient per unit mass = 6 s™
and restoring coefficient per unit mass = 9 s7) is released from rest at an extension 1 m
beyond its equilibrium position (s = 0). Find the position s(t) at all subsequent times t.

The simple mass-spring system may be modelled by a second order linear ODE.
2

The % term represents the acceleration of the mass, due to the net force.

The % term represents the friction (damping) term.

The s term represents the restoring force.

The model is

2
95 6% Les -0
dZ o dt

The auxiliary equation is
+64+9=0 = (143 =0 = 1=-3-3
The roots are equal, so the basis functions for the complementary function are
{s.s,} = {e_St,te_3t}
The ODE is homogeneous, so its general solution is also its complementary function:
s(t) = Ae™® + Bte™! = (A+Bt)e™

However, we have two additional items of information, (the initial conditions), which
allow us to determine the values of the two arbitrary constants.

Initial displacement
s(0)=1 = (A+0)e® =1 = A=1

s'(t) = (B-3A-3Bt)e™ = (B-3-3Bt)e™™
Initial speed (released from rest)

$(0)=0 = (B-3-0)" =0 = B=3
Therefore the complete solution is

s(t) = (1+ 3t)e_3t
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Example 1.06.1 (continued)

This is an example of critical damping.
Real distinct roots for A correspond to over-damping.
Complex conjugate roots for A correspond to under-damping (damped oscillations).

=

over-damped

critically damped

1

under-damped

lllustrated here are a critically damped case s(t) = (1+3t)e_3t (the solution to
Example 1.06.1), an over-damped case s(t) = %(4e_t - e"‘”) and an under-damped
case s(t) = e (cosGt + Lsin 6t) , all of which share the same initial conditions

2
s(0)=1 and s'(0)=0.
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1.07 Variation of Parameters

A particular solution 'y, to the inhomogeneous ODE y" + py' + qy = r(x) may be

constructed from the set of basis functions {yl, yz} for the complementary function by
varying the parameters:

Try yo (x) = u(x)y,;(x) + v(x)y,(x), where the functions u(x) and v(x) are such that
(i) y, isasolutionof y" + py' + qy = r(x) and
(i) one free constraint is imposed, to ease the search for u(x) and v(x).

Substituting y, = uy, + vy, intothe ODE,
(uy, + vy,) + p(uy, + vy,) +a(uy, +vy,) =r
= ((u’yl+v'y2)'+(uy1'+vy;)')

+ p((Uy +V Y )+ (Ui Hvy)) +a(uy +vy,) = T
Imposing the free constraint u’y, +v'y, = 0 simplifies the above expression to
(O+u"y +V'y, +uy/+vyy) + p(O+uy +vy,) + q(uy,+vy,) = r
= u(y+pyi+ay,) +v(y; Py +ay,) + Uy V'Y, =1
But y, and vy, are solutions of the homogeneous ODE y" + py' + qy = 0.
Therefore 0+0+ uy +Vv'y, =r isour other constraint.

Rewrite the two constraints together as a matrix equation:
i Y2 JLV r

Using Cramer’s rule to solve this matrix equation for u' and v we obtain

U = Wy and V' = W, . where W = ylr yf (the Wronskian),
W W 1 ¥
and W, = 0 Y = =Y,r, W, = ¢ =+
Y5 i r

Integrate to find u(x) and v(x), then construct y, (x) = u(x)y,(x) + v(x)y,(X).
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[space to continue the derivation of the method of variation of parameters]
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Example 1.07.1

A mass spring system is at rest until the instant t = 3, when a sudden hammer blow, of
impulse 10 Ns, sets the system into motion. No further external force is applied to the
system, which has a mass of 1 kg, a restoring force coefficient of 26 kg s™ and a friction
coefficient of 2 kg s*.  The response x(t) at any time t > 0 is governed by the
differential equation

2
d_z( + 2ﬂ + 26x = 105(t-3)
dt dt
(where o (t—a) isthe Dirac delta function),
together with the initial conditions  x(0) =x" (0) = 0.
Find the complete solution to this initial value problem.

—2+./4—-4x26 :
AE: 22421+26=0 = = : “2 L _145]
CF.: x.=Ax+Bx,, where x =etcos5t and x,=e 'sin5t
Define the abbreviations
c=cosbt, s=sinbt A=0(t-3), and E= e, then r)=10A.
P.S.: r(t) issuch that the method of undetermined coefficients cannot be used.

X Ec Es

W = X1, ? = E’(5¢° —cs+5s° +cs) = 5E’

X X E(-5s—-c) E(5c-5)

0 x
W, = | = —=X%r = —-Es-10A

rx
v —_ESEOA = —2E%sA

W SE

= u = -2[e"sin5t 5(t-3)dt = —2€°(sin15) H(t-3)

(using the sifting property of the Dirac delta function in integrals,

Ld f(1)5(t—a)dt = { f(a) (if c<a<d)

0 (a<cora>d)

0 (t<a) . . . :
and where H (t-a) = is the Heaviside (unit step) function.)
1 (t=a)
X, 0
W, =1 | = +xr = Ec-10A
v e _ _Ec-lZOA = 2EcA
W 5E

= Vv = 2_[e+t cos5t 5(t—3)dt = 2e3(c0315)H(t—3)
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Example 1.07.1 (continued)

Using the trigonometric identity sin(A—-B) = sinAcosB — cosAsinB,
X, = UX + VX, = 2¢°H (t—-3)e™'(—(sin15)cos5t + (cos15)sin5t)

= 2¢ " JH (t-3)sin(5t-15)
GS. X=X +X:

x(t) = e_t(ACOSSt + Bsin5t) + 2e_(t_3)sin(5(t—3))H (t-3)

But, for t < 3, the system is undisturbed, at rest at equilibrium, so that
x(t) = e (Acos5t + Bsin5t) + 0;  x(0)=x(0)=r(t)=0

= A=B=0.

The complete solution is therefore

(t=3)

x(t) = 2e" Vsin5(t-3)H(t-3)

This complete solution is continuous at t = 3.
It is not differentiable at t = 3, because of the infinite discontinuity of the Dirac delta
function inside r(t) at t=3.

A
0 - i
0 1 2 |
| - [0 (t<a)
Note: &(t-a) = glinog(t,a,g) H(t-a) = {l (t>a)
glt) [Total area = 1] H(t-a)
ot e,
L. 1 :
VL E :
o | D
P 7 0 & 3

a+s
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Example 1.07.2

Find the general solution of the ODE y' o+ 2y — 3y = X%+ % .

AE: A2+2,-3=0
= A+3)yA-1)=0 = 1 =-3,1
—3x X 2 2X

y,=¢ y Y, =€, Ir=X"+¢€

Particular Solution by Variation of Parameters:

—3X X
W (x) = det o Vel ger| © M
Yi Vs _3e73X X

0
W, = de{r yz} = —y,r = —ex(x2+e2X)

Y2
W _(XZGX +93X) X293X +65X
= u == 5 = -
W 4e X 4
D 1
3
= u= —lj(xzee’x +e5x)dx S e
4 +
2X L
3
2 EESX
9
3x +
— ou=-1 e—(9x2—6x+2) + Lg5x 0 1 3
4\ 27 5 7 ©

o

0
W, = det[zl } = +y,r = e_sx(x2+ezx)
1
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Example 1.07.2 (continued)

Loy W x2e X pe*  x%e X 4 5 :
W 42X 4 = -
. X e
= V= —I(xze_X +ex)dx +
4 2X —
1 2 +e ¥
= V= —(e_x(—x2—2x—2) n ex) +
4 0 e

Yo = Uy, + VY, =

3
%{(—%(9x2—6x+2) - %e“}e_g’x + %(—e_x(x2 +2x+2) + ex)ex}

_1 i(—gxz +6Xx—2-27x* ~54x ~54) + (—1 + 1je2X
427 5

1 i(—ssxz —48x—56) L A
427 5

Therefore

. 1 2X 1 2
Y = g€ - E(9x +12x +14)

and the general solution is

-3 1, 1
y(x) = Ae™* + BeX + se X _ E(9X2+12X+14)
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1.08 Method of Undetermined Coefficients

When trying to find the particular solution of the inhomogeneous ODE
d’y  dy
(x)

L

an alternative method to variation of parameters is available only when r(x) is one of
the following special types:

n
ekX coskx, sinkx, > a,x and any linear combinations of these types and any
k=1

products of these types. When it is available, this method is often faster than the method
of variation of parameters.

The method involves the substitution of a form for y, that resembles r(x), with
coefficients yet to be determined, into the ODE.

If r(x) = cek¥ ,thentry y, =d ekx, with the coefficient d to be determined.

If r(x) = acoskx or bsinkx, then try y, = ccoskx + dsinkx, with the coefficients c
and d to be determined.

If r(x) is an n™ order polynomial function of x, then set Y. equal to an n™ order
polynomial function of x, with all (n + 1) coefficients to be determined.

However, if r(x) contains a constant multiple of either part of the complementary

function (y1 or yz), then that part must be multiplied by x in the trial function for vy,.
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Example 1.08.1 (Example 1.07.2 again)

Find the general solution of the ODE y' o+ 2y — 3y = X%+ % .

AE: 2 +2.-3=0

=  (+3)U-1)=0 = 1=-31

CF: y.=Ae¥XiBe*

Particular Solution by Undetermined Coefficients:
r(x) = x*+e”,sotry y, = ax’ +bx+c+de?*

Then y" + 2y' — 3y =
2a + 4de*

<~ Y
+ dax + 2b + 4de?* « 42y
+ -3ax’* - 3x - 3 - 3de?* « -3y,
= 1x¥ o+ 0x + 0 + 1 « =r
Matching coefficients:
1 -8a=1 = a=-%
: 1 _ __4
X: 4(-3)-3=0 = b=-%
2(3+4
0 1 4 _ _ _ _ 14
X 2(——) + 2(—5) -3 =0 > ——E(Tj = —57
e (4+4-3)d =1 = d=1

G.S.: y(X) = ye(X)+ ¥s (%)
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Example 1.08.2

Find the general solution of the ODE
2
d’y + 4dy
dx?

—2X

+4y = ¢

AE: A +41+4=0 = (142 =0 = 2=-2-2

CF: ¥ = (Ax+B)e ™

P.S.
r(x) = e, butboth € and x e arein the C.F.

Therefore try y, = cx%e 2,

yp + 4y, + 4y, = c((4x2—8x+2) ( —2x? +2x) (xz))e‘zx = g 72X

= c((4-8+4)x" + (-8+8)x +2) =1
= c=13
Therefore the general solution is

y(x) = (%x2 + AX+ B)e_zx

Again, this is much faster than variation of parameters.
However, the method of variation of parameters may be employed regardless of the form

of the right side r(x), while the method of undetermined coefficients may be used only

for a narrow range of forms of r(x).
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1.09 Laplace Transforms

Laplace transforms can convert some initial value problems into algebra problems. It is
assumed here that students have met Laplace transforms before. Only the key results are
displayed here, before they are employed to solve some initial value problems.

The Laplace transform of a function f (t) is the integral

F(s) = £{f(t)} = joooe_Stf(t)dt

where the integral exists.
Some standard transforms and properties are:

Linearity:
£{af(t) + bg(t)} =as{f(t)} + bs{g(t)} (ab=constants)

Polynomial functions:
tn—l

=g = ) (n-1)!

First Shift Theorem:
L{f(t)} = F(s) = f{eatf(t)} = F(s-a)

n-1,at
= :51{—1 }: et ang st 1 _L_L ¢
s—a (s_a) (n—l)!

Trigonometric Functions:

at o

sf{eatsina)t} = + - g1 + _ & sin wt
(s-a) +o’ (s—a) + o’ o

+{e*cosot | = _sta o ga) st A L eatgggg

Derivatives:
A1) =s2{fn)} - £(0)
L{f7(t)} =SS f(t)} - s f(0) - £'(0)
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Integration:

0 (t<a
where H (t—a) = {1 Etia) is the Heaviside (unit step) function.

Dirac delta function
x{5(t—a)} =g @

where Ld f(t)s(t—a)dt = { fga) ((alf< Cc:raa<>dd)) :

For a periodic function f (t) with fundamental period p,

Convolution:

LHF()G(s)} = £7{F(s) )+ 7{G(s)}
where (f * g)(t) denotes the convolution of f (t) and g(t) and is defined by
t
(f*0)(t) = [ f(r)g(t-r)dz
The identity function for convolution is the Dirac delta function:
S(t—a)xf(t) = f(t-a)H(t-a) = &(t)*f(t) = f(t)
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Here is a summary of inverse Laplace transforms.

F(s) f ()
I . e Uf (1) dt f(t)
1 . tn—l
~ (heu
s" (et (n-1)!
1 1
Js Jrt
- at
s—a €
1 (e "t e
(s—a) (n—1)!
e ® S(t-a)
e—aS
S H((t-a)
1 sin ot
s? + w? @
1 e® sin wt
(s—a) +w? o
( )12 . e® sinh bt
s—a) -b b
-a) t
(s—af + o’ e cos wt
_(s-a) e® cosh bt
(s—a)’ —b?

F (s) f(t)
1 1-cos wt
7 2 -
S is + o ) >
1 wt—sin ot
s? (s% + w? o3
1 sin ot — wt cos mt
2
o) T
S ; t sin wt
(32 +a)2) 2w
s? — @?
5 t cos wt
(s2 +a)2)

as® s(e"IS —1)

{s"F(s) — s"'f(0)
— s"2£N(0) - s"*f0(0)

Square wave,
period 2a,
amplitude 1

Triangular wave,
period 2a,
amplitude a

Sawtooth wave,

period a,
amplitude b

d"f

_sf0D @) 10D ()} dt”

LE)
S

dF
ds

Ié f(r)dr

—t (1)




ENGI 9420 1.09 Laplace Transforms Page 1.34

Example 1.09.1 (Example 1.08.2 again)

Find the general solution of the ODE
d?y
dx?

LN 4y = e~
dx

The initial conditions are unknown, so let a =y(0) and b =y (0).
Taking the Laplace transform of the initial value problem,

(SZY—s-a—b)+4(sY—a)+4Y _ 1
S+2
= (s"+4s+4)Y = as+4a+b + 1
S+2
as+4a+b 1 (s+2) 2a+b 1
= + = a + +

(3+2)2 (s+2)3 (s+2)2 (s+2)2 (5+2)3

n-1,—ax
Note that #~* 1 b= X_°
(s+a) (n-1)!

4 1 4 1 =l 1
= y=a/t {s+—2} + (2a+h)s {(S+2)2} + 7/ {(s+2)3}

Introducing the new arbitrary constants A=2a+ b and B =a, we recover the general
solution

y = (3x°+Ax+B)e ™
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Example 1.09.2 (Example 1.07.1 again)

Find the complete solution to the initial value problem

2
9%, 9%, 26x = 105(t-3)
dt dt
(where o (t—a) isthe Dirac delta function),
together with the initial conditions  x(0) =x" (0) = 0.

Let X(s) = £ {x(t)} be the Laplace transform of the solution x(t).
Taking the Laplace transform of the initial value problem,
(X =0-0) + 2(sX - 0) + 26X =10e™>

-3s
= (s°+25+26)X =106 = X = _M0e ™ #{ 2e7 sin5t e
(s+1)°+5°
By the second shift theorem, it then follows that the complete solution is

(-3

x(t) = 2e tsin5t H(t-3) = 2e " /sin5(t-3)H (t-3
t—>t-3

This is a considerably faster solution than that provided by the method of variation of
parameters (Example 1.07.1).

OR

10¢ 7| 2e7tsi = #{2esinbt=5(t-
X(s) = )T = #{ 27 sin5t |- £ {5(t-3)} = £{2 5t+5(t-3) |

Using the convolution properties of the Dirac delta function,

x(t) = (29_t sin 5t )*5(t—3) = 2e_(t_3)sin5(t—3) H(t-3)
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1.10 Series Solutions of ODEs

If the functions p(x), q(x) and r(x) in the ODE
1Y b0 4 a(y = ()
dx? dx
are all analytic in some interval x, —h < x < x,+h (and therefore possess Taylor series
expansions around x, with radii of convergence of at least h), then a series solution to the
ODE around x, with a radius of convergence of at least h exists:

& My
y(x) = nZ:O<’:1H(X—xo)”, a, = Y (%)

n!

Example 1.10.1

Find a series solution as far as the term in x°, to the initial value problem
d’y  _dy  x
— - X— + ey = 4; 0)=1, y'(0)=4
dX2 dX y y( ) y( )

None of our previous methods apply to this problem.
The functions —x, €* and 4 are all analytic everywhere.

The solution of this ODE, expressed as a power series, is
n 0 m O
y(x) = y(0) + y'(0)x + %xz + y?’—(!)x3 + ...

But y(0)=1 and y'(0) =4.

From the ODE,

y'=xy —ey+4 = y(0)=0-y(0)+4=-1+4=3
Differentiating the ODE,

y" =y +xy" —efy-ey +0 = y"(0) =y (0)+0-y(0)-y(0) =-1
Therefore the first four terms of the solution are

y(x) =1+ 4x + gxz —%xg’ + ..
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Example 1.10.2

Find the general solution (as a power series about x = 0) to the ordinary differential
equation
d’y

vl X’y =0

Let the general solution be y(x Z

Then y'(x) = Znanx and y'(x) = i n(n-1)a,x"2
n=2

n=1

Substitute into the ODE:

0

> n(n- 1)anx”2+x22anx -0 = Z n-1)a,x"" +§:anx”+2:0
n=0

n=2
Shift the indices on each summatlon so that the exponent of xis niin both cases:

= Y (n+2)(n+1)a,, X" + > 8, ,x" = 0
n=0 n=2
Bring the two summations together for all terms from n = 2 onwards:

= 2x1a,x’ + 3x2a,x" + i((n+2)(n+1)an+2 +a,,)x" =0

But this equation must be true regardless of the choice of x.
Therefore the coefficient of each power of x must be zero. = a, =a; =0

Bae, e
d - 02 (n=234,.. S = 4,5,6, ...
I ) = a=nDy )
% _ B - T
T RT3 T T2 % T a2
-a + + - + +
aﬁ = 4 — ao — ao’ ag — as — ai _ ai

8x7 56x12 672 Ox8  72x20 1440’

and a, =y(0) and a, =y'(0) are arbitrary.

Therefore the general solution is

X) = x+0x2+0x3’—ix4—ix5’+0x€’+0x7
Y(x) =2 + & 12 20
Y WY W LU e

672 1440
or

y(x) = ao(l - X+ g - ) + ai(x — X+ X - )
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1.11 The Gamma Function

The gamma function F(x) is a special function that will be needed in the solution of

Bessel’s ODE. F(x) is a generalisation of the factorial function n! from positive

integers to most real numbers. For any positive integer n,
nl=nx(n-1)x(n-2)x...x3x2x1 (with 0! defined to be 1)

When x is a positive integer n, | T'(n)=(n-1)!

We know that n!=nx(n-1)!
The gamma function has a similar recurrence relationship: F(x+1) = x.l“(x)

. . _ ) _ I(x+1)
This allows F(x) to be defined for non-integer negative x, using F(X) = »
For example,
it can be shown that F(%) =z

r(+3) r-%)  az
= I(-1)= 2= _dr = T1(-3) = 2/ = 4 , etc.
( 2) _% ( 2) _% 3
pd
['(x) is infinite when x is a negative s =I(x)

integer or zero. It is well defined for all
other real numbers Xx.

In this graph of y=T"(x),

|

|

|

|

|

|

|

|

values of the factorial function : :
(at positive integer values of x) - | 2 3 4

|

|

|

|

|

|

are highlighted. If
|

There are several ways to define the gamma function, such as

I'(x) = I:tx_le_tdt (x>0)

and
X

F0) = i, S erD).. . (xa )
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A related special function is the beta function:

r(m)r(n)

1 /2
B(m,n) = J tm_l(l—t)n_ldt = ZI” sin?™ 19 cos?" Lo de =
0 0 I'(m+n)

Among the many results involving the gamma function are:

For the closed region V in the first octant, bounded by the coordinate planes and the

x\* [y Y
surface (—j J{Bj +(—j =1, with all constants positive,
a C

= [ty taxay gz - 2P T(&)T(3)r(7)
“ AT

For the closed area A in the first quadrant, bounded by the coordinate axes and the curve

a B
(_) +(%) = 1, with all constants positive,

S—

[ oy - 25 DA
A o Tl d )

Example 1.11.1

Establish the formula for the area enclosed by an ellipse.

2 2
The Cartesian equation of a standard ellipse is (ij +(—j =1.
a

Set a=p4=2 and p=q=1,then

apt T Hrd r(3 2
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1.12 Bessel and Legendre ODEs

Frobenius Series Solution of an ODE

If the ODE
P(x)y" + Q(x)y" + R(x)y = F(x)
is such that P(x,) =0, but (x—xo)Q(X) ., (x=%,)"=— and

P(x)

analytic at x,, then x =X, isa regular singular point of the ODE.

A Frobenius series solution of the ODE about x =X, exists:

(9 = > (xx)""

for some real number(s) r and for some set of values { Cn } :

Example 1.12.1

Find a solution of Bessel’s ordinary differential equation of order v, (v > 0),

X2y" + Xy + (xz—vz)y =0

P0)=0 = x,=0 isasingular point.

(x—xo)% = xX—X2:1 : (x—xo)2 R()
F(x)
P(x)

Therefore x, =0 is aregular singular point of Bessel’s equation.

0
—_
>
~
>
N

and =0

Substitute the Frobenius series y(x) = > ¢, x""" into the ODE:
n=0

00

i(n+r)(n+r—l)cnx”+r_2+2 + ) (n+r)c, XM
n=0

o

n=

Q0 0
n chxn+r+2 _ sz CnXn+r -0
n=0 n=0
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Example 1.12.1 (continued)

Adjust the index on the third summation so that the exponents of x match:

icn [(n+r)(n+r—l+1) - vz]x“Jrlr + icn_zxmrr =0
0 n=2

n=

The summations can be combined for n = 2 onwards:
(rz—vz)coxr + [(r+1)2 - J XLy Z[( (n+r)’ - 1/2)cn + cn_z}xn” =0

Setting the coefficient of X" (the lowest exponent present) to zero generates the indicial

equation r’—v2 =0 = r==zv.

Examining the positive root, the series now becomes

0+ [(v+1)2 - } x4 Z[( n+v) - 1/2)0n + cn_zjxn+|r =0

= (2v+l)ex™ 4 i[(ZnVJrnz)cn + cn_z}xn+r =0
n=2

But v>0 = 2v+1#0 = ¢ =0

—C
For n>2, ¢, = —22_

n(n+2v)
It then follows that this series must be even: 0=c¢, =c;=c;=... or ¢, ;=0 VkeN

For the even order terms, replace the index n Dby the even index 2k (where k is any
natural number) and pursue the recurrence relation down to c,:

. - _ Cok2  _ (-1) c _ (-1 (1) c
7 2k(2k+2v)  2%k(k+v) AR T 2%k (k+v) 28 (k-1)(k-1+v) 2k2)
R R o
2%k(k+v) 22(k-1)(k-1+v) 2°(k-2)(k-2+v) 23
_1)k 3
1)-(k+v)(k=1+v)(k=2+v)...(k=[k=1]+v) 2%

" 2K(k-1)(k-2)...(k [k~
—1)¢

_ (-
T AT (k) (v k1) (v +1)
. (-1)" T(v+1)
2 22kk!(v+k)(v+k -1)...(v+1) T'(v+1) 0
= Cy = (_1)k T(v+l)c, |= i-v!co if v=0,12,...

2KIC (v +k +1) 2%k (v+k)!
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Example 1.12.1 (continued)

One Frobenius solution of Bessel’s equation of order v is therefore

I8 = ST ()Yt e = 6T ()3, (9

where J, (x) is the Bessel function of the first kind of order v.

It turns out that the Frobenius series found by setting r = —v generates a second linearly
independent solution J_,(x) of the Bessel equation only if v is not an integer.
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The Bessel ODE in standard form,

2.,m

X2y" + Xy’ + (xz—vz)y =0
has the general solution

y(x) = AJ,(x) + BY,(x)
unless v is not an integer, in which case Y, (x) can be replaced by J_, (x) .
Y, (x) is the Bessel function of the second kind.

When v isaninteger, J_, (x) = (-1)" J, (x).
Graphs of Bessel functions of the first kind, for v=0,1,2:

-
0.8+
0.6
0.4

(), 2

0.4+

The series expression for the Bessel function of the first kind is

3, (x) = Z%(gfkw

This function has a simpler form when v is an odd half-integer. For example,

2 . 2
Jy, (%) = /Esmx, I (X) = /Hcosx
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1.12 Bessel and Legendre ODEs

ENGI 9420
The Bessel function of the second kind is
Y, (x) = Jv(x)cos_(wr) - J_,(x)
sin(vz)
= — 00

Y, (x) isunboundedas x —0: Jim Y, (x)
Bessel functions of the second kind (all of which have a singularity at x = 0):

i

{

[ )
]

)

|

i

Bessel functions arise frequently in situations where cylindrical or spherical polar

coordinates are used.

A generalised Bessel ODE is
o d?y dy 2.2,2C 2 2.2
g (-2a)x ¢ (b%*x* + (8% =c?))y = 0
whose general solution is
y(x) = xa(AJv(bxc) + BY,,(be))

For a generalised Bessel ODE with a >0, whenever the solution must remain bounded

as x -0, the general solution simplifiesto  y(x)=AxJ, (bx®).
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Example 1.12.2

Find a Maclaurin series solution to Legendre’s ODE

d’y dy
(1-x )dx2 - 2xd— + p(p+1l)y =0

in the case when p is a non-negative integer.

P(x)=1-x* = P(0)=1#20 = x=0 isaregular point of the ODE.

Let the general solution be y(x) = > ax".
n=0

Then y'(x) = inanx”_1 and y'(x) = i n-1)a,
n=1 n=

Substitute into the ODE:

2 n(n-t)a (x"2 )

0

Z‘b n-1)a,x"" ( (n-1) = 2n + p(p+1))a,x" =0
n=

But the first two terms (n=0 and n = 1) of the first series are both zero.

nanx +pr+1an =0

i n(n-1)ax"? =0+ 0+ > n(n-1)ax"? = > (n+2)(n+1)a,,,x"
n=0 n=2 n=0
after a shift in indices. Returning to the full ODE,

i(n+2)(n+l)an+2xn + i(—n2+n—2n +p’+p)ax" =0
n=0

=X ni;)((n+2)(n+l)an+2 + (—(nz— p’) - (n- p))an)x” =0

Matching coefficients of x", (n=0):

(n+2)(n+D)ay,, = (W -p*n-play = 2, = (n(_nf)z()tflgl)

(n+p-1)(n-p-2)
n(n-1)

oo, .,

a,, (n=>2),with a, and a, arbitrary.

Shifting indices, a, =

Rearranging slightly, a, =
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Example 1.12.2 (continued)

_ —p(p+1) _ —(p-1)(p+2)
T RT T 0 BT T g, W
o - —(P=2)(p+3)  _ +p(p+1)(P-2)(P+3)
4 4%x3 4x3x2x1 ’
~—(p=-3)(p+4) . +(p-1)(p+2)(p-3)(p+4)
% = 5x4 B BEx4x3x2x1 '
_Z(p=4)(p+8) - =P(P+1)(p=2)(p=3)(P=4)(P*5) . oo
6x5 4 O6x5x4x3x2x1 ’

It then follows that the general solution to Legendre’s ODE is

yp(x) = ao[l _ %Xz N p(p+1)(p:”—2)(p+3) y

p(p+1)(P-2)(p+3)(P-4)(P+5) , j

6!
. a{x _(p=D(p+2) o, (P=D)(P+2)(P=3)(P+4)

3! 5!
_(P=1)(p+2)(P=3)(P+4)(P-5)(P+6) s j
7
where a, and a, are arbitrary constants. This series converges on [-1, 1] .

These solutions y(x) = > a,x" are Legendre functions of order p.
n=0

If p isanon-negative integer then
_(P=p)(p+p~+1)

P2 (p+2)(p+l)

= a,,, =0 VvVkeN

a a,=0 = a,, =0 =

p+2
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If we set a =0 when p is even, then the series solution terminates as a p" order
polynomial (and therefore converges for all x).

If we set a, =0 when p is odd, then the series solution terminates as a p" order
polynomial (and therefore converges for all x).

With suitable choices of g, and a,, so that R, (1)=1,

we have the set of L egendre polynomials:

R(x)=1, R(x)=x, R (x)=
P (x)=3(5x"-3x), P(x)=4(35x"-30x"+3), R(x)=
P, (x) =£5(231x° - 315x" +105x* - 5), etc.

Each ) is a solution of Legendre’s ODE with p= n.

(3x* -1),
(63x —70%° +15x),

Il
OOll—‘ N

fs
P (

Rodrigues’ formula generates all of the Legendre polynomials:
1 d",, 0
Pa(x) = 2“n!d?((x -1) )

Among the properties of Legendre polynomials is their orthogonality on [-1, 1]:
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[Space for any additional notes]

END OF CHAPTER 1
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