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5. The Gradient Operator

A brief review is provided here for the gradient operator V in both Cartesian and
orthogonal non-Cartesian coordinate systems.

Sections in this Chapter:

5.01 Gradient, Divergence, Curl and Laplacian (Cartesian)

5.02 Differentiation in Orthogonal Curvilinear Coordinate Systems
5.03 Summary Table for the Gradient Operator

5.04 Derivatives of Basis Vectors

5.01 Gradient, Divergence, Curl and Laplacian (Cartesian)

Let z be a function of two independent variables (x, y), so that z =f (X, y).
The function z = f (x, y) defines a surface in R>.
At any point (x, y) in the x-y plane, the direction in which one must travel in order to
experience the greatest possible rate of increase in z at that point is the direction of the
gradient vector,
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The magnitude of the gradient vector is that greatest possible rate of increase in z at that
point. The gradient vector is not constant everywhere, unless the surface is a plane.

(The symbol V is usually pronounced “del”).

The concept of the gradient vector can be extended to functions of any number of

T
variables. If u=f(x,y, zt), then Vf :{51‘ of of af} |

ox 0y 0z ot
If v is a function of position r and time t, while position is in turn a
function of time, then by the chain rule of differentiation, // \\
dv X ¥ z i
dt t t t

which is of use in the study of fluid dynamics.
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The gradient operator can also be applied to vectors via the scalar (dot) and vector (cross)
products:

The divergence of a vector field F(x, vy, z) is

A region free of sources and sinks will have zero divergence:
the total flux into any region is balanced by the total flux out from that region.

The curl of a vector field F(x,y, z) is

.0 | [or _oR]
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curlF = VxF = | j 2 F| = ok _ 9%
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In an irrotational field, curl F=0.
Whenever F = V¢ for some twice differentiable potential function ¢, curl F=0
or

curl (grad ¢) = VxV¢ = 0
Proof:
= o r [op op o]
F=V¢=[RFF] :{8_?8_38_?}

= curlVg =
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Among many identities involving the gradient operator is

div(curl If) = V.VxF =0

for all twice-differentiable vector functions F

Proof:

diveurl F =

The divergence of the gradient of a scalar function is the Laplacian:

2 2 2
div(grad f) = VeV = V?f _ ot ot o'f

+ +
ox*  oy* 01?

for all twice-differentiable scalar functions f.

In orthogonal non-Cartesian coordinate systems, the expressions for the gradient operator
are not as simple.
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5.02 Differentiation in Orthogonal Curvilinear Coordinate Systems

For any orthogonal curvilinear coordinate system (us, Uy, Us) in R®,

' 1r L = 1 of
the unit tangent vectors along the curvilinear axesare &, = T, = Hs_,
i OU;
or
where the scale factors | h = o
i

The displacement vector T can then be writtenas 7 = ué, +u,é, +u.8,,
where the unit vectors &; form an orthonormal basis for R,

. 0 (1#]
1 (i=])
The differential displacement vector dr is (by the Chain Rule)
= T or or A o A
dar = a—u]-dul + a—uzduz + Tsdus = hldulel + h2 dU2e2 + h3du363
and the differential arc length ds is given by

ds? = dredr = (hdy,)’ +(h,du,)” +(h,du,)’

The element of volume dV is

o(x,Vv,z
dv = hhh, dudu,dy, = ﬁ du,du,du,

1'~21¥3

Jacobian
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= aX ay az duldUZdU3

8u2 aUZ 8U2

ox oy oz

6U3 8U3 8U3

Example 5.02.1: Find the scale factor hy for the spherical polar coordinate system
(x,y,z) = (rsin@cosg, rsin@sing, rcosé):
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5.03 Summary Table for the Gradient Operator
Gradient operator v_809 & 0 & 9
h ou, h,ou, hou
Gradient oy 8NV &NV &V
h ou, h,ou, h ou,
. o(h, h,F) o(h,hF,) o(hhF
Divergence VeF = 1 (R 1)+ (h: 2)+ (b, 3)]
h h, h, ou, au, ou,
A 0
e, — F
he 5o hR
Curl VxF = 1 h, &, 9 h, F,
h h, h, au,
A 0
h3e3 a_u3 h3 F3
Laplacian VAV = - i[hz_hsﬁ}i(ﬂﬂ +i{ﬂﬂ}
hh,h {oul h ou) ou,{ h, ou,) ou,{ hy ou,

Scale factors:
Cartesian: hy =hy =h, = 1.

Cylindrical polar: h,=h,=1, hy = p.

Spherical polar: ho=r, hy=rsing.

Example 5.03.1: The Laplacian of V in spherical polars is

VAV =
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Example 5.03.2

A potential function V (F) is spherically symmetric, (that is, its value depends only on
the distance r from the origin), due solely to a point source at the origin. There are no
other sources or sinks anywhere in R®. Deduce the functional form of V ().
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5.04 Derivatives of Basis VVectors

Cartesian: 2 =Ej 950
dt dt dt

Cylindrical Polar Coordinates:

X=pCcos¢, y=psSing, z=12
d . d¢,
mp_m¢
d . dg,
m¢_ at ©
d%-0
dt

Spherical Polar Coordinates.

The “declination” angle 6 is the angle
between the positive z axis and the
radius vector r. 0<f<m.

The “azimuth” angle ¢ is the angle on

the x-y plane, measured anticlockwise

from the positive x axis, of the shadow

of the radius vector. 0< ¢<2x.
Z=rcosf.

The shadow of the radius vector on the
x-y plane has length r sin 6.

It then follows that

X = rsin @ cos ¢

gf = %é + %sineﬁ
dt dt dt
dg__99% %0030;13
dt dt dt

d

é = —%(sin@f+coseé)

-
I

<
Il

r =

°
>

Xi+yj+zK

)'(f+yj+z'I2

+ zk

= V=pp+pdd+1K

[radial and transverse components of V]

and y =rsindsin¢.

Fooin &

r=rf

= PP +r00+rdsinbg
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Example 5.04.1

Find the velocity and acceleration in cylindrical polar coordinates for a particle travelling
along the helix x=3cos2t, y=3sin2t,z=t.

Other examples are in the problem sets.

END OF CHAPTER 5
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