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1.06 Second Order Homogeneous Linear ODEs    
 
The general second order linear ordinary differential equation with constant real 
coefficients may be written in the form 

( )
2

2

d y dyp q y r x
dx dx

+ + =  

 
If, in addition, the right-side function  r(x)  is identically zero, then the ODE is said to be 
homogeneous.   Otherwise it is inhomogeneous. 
 
The most general possible solution  Cy   to the homogeneous ODE  0y p y q y′′ ′+ + =  
is called the complementary function.  
A  solution  Py   to the inhomogeneous ODE  ( )y p y q y r x′′ ′+ + =   is called the 
particular solution. 
The linearity of the ODE leads to the following two properties: 
Any linear combination of two solutions to the homogeneous ODE is another solution to 
the homogeneous ODE; and  
The sum of any solution to the homogeneous ODE and a particular solution is another 
solution to the inhomogeneous ODE. 
 
It can be shown that the following is a valid method for obtaining the complementary 
function: 
 
From the ODE ( )y p y q y r x′′ ′+ + =  form the auxiliary equation (or “characteristic 
equation”) 

2 0p qλ λ+ + =  
If the roots 1 2,λ λ  of this quadratic equation are distinct, then a basis for the entire set of 

possible complementary functions is { } { }1 2
1 2, ,
x x

y y e e
λ λ

= .    

 
If the roots are not real (and therefore form a complex conjugate pair  a ± bj ), then the 
basis can be expressed instead as the equivalent real set { }cos , sinax axe bx e bx . 
 
If the roots are equal (and therefore real), then a basis for the entire set of possible 
complementary functions is { } { }1 2, ,x xy y e x eλ λ= .  

The complementary function, in the form that captures all possibilities, is then 
C 1 2y A y B y= +  

where  A  and  B  are arbitrary constants. 
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Example 1.06.1    
 
A simple unforced mass-spring system (with damping coefficient per unit mass = 6 s–1 
and restoring coefficient per unit mass = 9 s–2) is released from rest at an extension 1 m 
beyond its equilibrium position (s = 0).   Find the position  s(t)  at all subsequent times  t. 
 
 
The simple mass-spring system may be modelled by a second order linear ODE. 

The 
2

2

d s
dt

 term represents the acceleration of the mass, due to the net force. 

The ds
dt

 term represents the friction (damping) term. 

The  s  term represents the restoring force. 
 
The model is 

2

2 6 9 0d s ds s
dt dt

+ + =  

The auxiliary equation is  
( )22 6 9 0 3 0 3, 3λ λ λ λ+ + = ⇒ + = ⇒ = − −  

The roots are equal, so the basis functions for the complementary function are 

{ } { }1 2
3 3, ,t ts s e t e− −=  

The ODE is homogeneous, so its general solution is also its complementary function: 
( ) ( )3 3 3t t ts t Ae B t e A Bt e− − −= + = +  

However, we have two additional items of information, (the initial conditions), which 
allow us to determine the values of the two arbitrary constants. 
 
Initial displacement 
( ) ( ) 00 1 0 1 1s A e A= ⇒ + = ⇒ =  

 
( ) ( ) ( )3 33 3 3 3t ts t B A Bt e B Bt e− −′ = − − = − −  

Initial speed (released from rest) 
( ) ( ) 00 0 3 0 0 3s B e B′ = ⇒ − − = ⇒ =  

Therefore the complete solution is 
 

( ) ( ) 31 3 ts t t e−= +  
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Example 1.06.1   (continued) 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
This is an example of critical damping. 
Real distinct roots for λ correspond to over-damping. 
Complex conjugate roots for λ correspond to under-damping (damped oscillations). 

 
Illustrated here are a critically damped case ( ) ( ) 31 3 ts t t e−= +  (the solution to 

Example 1.06.1), an over-damped case ( ) ( )41
3 4 t ts t e e− −= −  and an under-damped 

case ( ) ( )3 1
2cos 6 sin 6ts t e t t−= + , all of which share the same initial conditions 

s(0) = 1  and  ( )0 0s′ = . 
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1.07 Variation of Parameters     
 
A particular solution  Py   to the inhomogeneous ODE  ( )y p y q y r x′′ ′+ + =   may be 

constructed from the set of basis functions { }1 2,y y  for the complementary function by 
varying the parameters:  
 
Try ( ) ( ) ( ) ( ) ( )P 1 2y x u x y x v x y x= + , where the functions u(x) and v(x) are such that  

  (i)  Py   is a solution of ( )y p y q y r x′′ ′+ + =    and 
 (ii) one free constraint is imposed, to ease the search for  u(x) and v(x). 
 
Substituting  P 1 2y u y v y= +   into the ODE,  

 ( ) ( ) ( )1 2 1 2 1 2u y v y p u y v y q u y v y r′′ ′+ + + + + =  

( ) ( )( )
( ) ( )( ) ( )

1 2 1 2

1 2 1 2 1 2

u y v y u y v y

p u y v y u y v y q u y v y r

′ ′′ ′ ′ ′⇒ + + +

′ ′ ′ ′+ + + + + + =
 

Imposing the free constraint  1 2 0u y v y′ ′+ ≡   simplifies the above expression to  
 ( ) ( ) ( )1 2 1 2 1 2 1 20 0u y v y u y v y p u y v y q u y v y r′ ′ ′ ′ ′′ ′′ ′ ′+ + + + + + + + + =  

( ) ( )1 1 1 2 2 2 1 2u y p y q y v y p y q y u y v y r′′ ′ ′′ ′ ′ ′ ′ ′⇒ + + + + + + + =  
But  1y   and  2y   are solutions of the homogeneous ODE  0y p y q y′′ ′+ + = . 
Therefore 1 20 0 u y v y r′ ′ ′ ′+ + + =  is our other constraint. 
 
Rewrite the two constraints together as a matrix equation: 

1 2

1 2

0y y u
y y v r

′     
=     ′ ′ ′    

 

 
Using Cramer’s rule to solve this matrix equation for u' and v'  we obtain 

1 21 2

1 2

and , where
y yW Wu v W
y yW W

′ ′= = =
′ ′

 (the Wronskian),  

2 1
1 2 2 1

2 1

0 0
and ,

y y
W y r W y r

r y y r
= = − = = +

′ ′
 

Integrate to find  u(x) and v(x), then construct  ( ) ( ) ( ) ( ) ( )P 1 2y x u x y x v x y x= + . 
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[space to continue the derivation of the method of variation of parameters] 
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Example 1.07.1    
 
A mass spring system is at rest until the instant   t = 3, when a sudden hammer blow, of 
impulse 10 Ns, sets the system into motion.   No further external force is applied to the 
system, which has a mass of 1 kg, a restoring force coefficient of 26 kg s–2 and a friction 
coefficient of 2 kg s–1.   The response  x(t)  at any time  t > 0  is governed by the 
differential equation 

( )
2

2 2 26 10 3d x d x x t
dt dt

δ+ + = −  

(where   δ (t – a)   is the Dirac delta function), 
together with the initial conditions     x(0) = x' (0) = 0. 
Find the complete solution to this initial value problem. 
 
 

2 2 4 4 26
A.E.: 2 26 0 1 5

2
jλ λ λ

− ± − ×
+ + = ⇒ = = − ±  

C.F.:     C 1 2x A x B x= + ,   where   1 cos5tx e t−=    and   2 sin 5tx e t−=  
Define the abbreviations 
c = cos 5t,   s = sin 5t   ∆ = δ (t – 3),   and   E = e–t,   then   r(t) = 10 Δ . 
P.S.:     r(t)   is such that the method of undetermined coefficients cannot be used. 

( ) ( ) ( )1 2 2 2 2 2

1 2

5 5 5
5 5
E c E sx x

W E c cs s cs E
E s c E c sx x

= = = − + + =
′ ′ − − −

 

2
1 2

2

0
10

x
W x r E s

r x
= = − = − ⋅ ∆

′
 

11
2

10 2
5

W E su E s
W E

−− ⋅ ∆′ = = = − ∆  

( ) ( ) ( )32 sin 5 3 2 sin15 3tu e t t dt e H tδ+⇒ = − − = − −∫  

(using the sifting property of the Dirac delta function in integrals, 

( ) ( ) ( ) ( )
( )

if
0 or

d

c

f a c a d
f t t a dt

a c a d
δ

< <− =  < >∫  

and where ( ) ( )
( )

0
1

t a
H t a

t a
<− =  ≥

 is the Heaviside (unit step) function.)  

1
2 1

1

0
10

x
W x r E c

x r
= = + = ⋅ ∆

′
 

12
2

10 2
5

W E cv E c
W E

−⋅ ∆′ = = = ∆  

( ) ( ) ( )32 cos5 3 2 cos15 3tv e t t dt e H tδ+⇒ = − = −∫  
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Example 1.07.1   (continued) 
 
Using the trigonometric identity   sin (A – B)   =   sin A cos B   –   cos A sin B, 

( ) ( ) ( )( )
( ) ( ) ( )

P 1 2
3

3

2 3 sin15 cos5 cos15 sin 5

2 3 sin 5 15

t

t

x u x v x e H t e t t

e H t t

−

− −

= + = − − +

= − −
 

G.S.     C Px x x= + : 

( ) ( ) ( ) ( )( ) ( )3cos5 sin 5 2 sin 5 3 3ttx t e A t B t e t H t−− −
= + + − −  

 
But, for   t < 3, the system is undisturbed, at rest at equilibrium, so that 
( ) ( ) ( ) ( ) ( )cos5 sin 5 0 ; 0 0 0tx t e A t B t x x r t− ′= + + = = =  

0.A B⇒ = =  
The complete solution is therefore 

( ) ( ) ( ) ( )32 sin 5 3 3tx t e t H t− −= − −  

This complete solution is continuous at   t = 3. 
It is not differentiable at   t = 3, because of the infinite discontinuity of the Dirac delta 
function inside  r(t)  at   t = 3. 

 
  

Note: ( ) ( )
0

lim ; ,t a g t a
ε

δ ε
→

− =    ( ) ( )
( )

0
1

t a
H t a

t a
<− =  ≥

 

 
[Total area = 1]   
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Example 1.07.2    
 
Find the general solution of the ODE    y"  +  2y'  −  3y  =  x2  +  e2x  . 
 
 
A.E.: λ 2  +  2λ  −  3  =  0 
 
⇒ (λ + 3) (λ − 1)  =  0    ⇒   λ  =  −3, 1 
 
 1 2

23 2, ,x x xy e y e r x e−= = = +    
 
Particular Solution by Variation of Parameters: 
   

( ) 1 2

1 2

3
2

3
det det 4

3

x x
x

x x
y y e e

W x e
y y e e

−
−

−

  
= = =  ′ ′    − 

 

 

( )2
1 2

2

2 20
det x xy

W y r e x e
r y

 
= = − = − + ′ 

 

( )
1

2 23 3 5

2 44

x x x x

x

x e eW x e eu
W e−

− +  +′⇒ = = = −  
 

 

 
 

( )2 3 51
4

x xu x e e dx⇒ = − +∫  

 
 
 
 
 
 

( )2
3

51 19 6 2
4 27 5

x
xeu x x e

 
⇒ = − − + +  

 
 

 
 

( )1 2
2 1

1

3 20
det x xy

W y r e x e
y r

− 
= = + = + ′ 

 

 

D  I 
x2  e3x 
 +  

2x  31
3

xe  

 −  

2  31
9

xe  

 +  

0  31
27

xe  
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Example 1.07.2   (continued) 
 

2
2 23

2 44

x x x x

x
W x e e x e ev
W e

− − −

−
+ +′⇒ = = =  

( )21
4

x xv x e e dx−⇒ = +∫  

 
 

( )( )21 2 2
4

x xv e x x e−⇒ = − − − +  

 
 

P 1 2y u y v y= ⋅ + ⋅ =  
 

( ) ( )( )2 5 2
3

31 279 6 2 2 2
27 7

1
5 24

x
x

x x x xe x x e e e x x e e− − 
− − + − + − + +

  
 


+  
   

 

 
 

( )2 2 21 1 19 6 2 27 54 54 1
4 27 5

xx x x x e  = − + − − − − + − +  
  

 

 

( )2 21 1 436 48 56
4 27 5

xx x e = − − − + 
 

 

 
Therefore  
 

( )2
P

21 1 9 12 14
5 27

xy e x x= − + +  

 
and the general solution is 
 

( ) ( )23 21 1 9 12 14
5 27

x x xy x A e B e e x x−= + + − + +  

 

D  I 
x2  e−x 
 +  

2x  −e−x 
 −  
2  +e−x 
 +  
0  −e−x 
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1.08 Method of Undetermined Coefficients     
 
When trying to find the particular solution of the inhomogeneous ODE  

( )
2

2

d y dyp q y r x
dx dx

+ + =  

an alternative method to variation of parameters is available only when  ( )r x   is one of 
the following special types:  

1
, cos , sin , k

k
k

n
k xe kx kx a x

=
∑  and any linear combinations of these types and any 

products of these types.   When it is available, this method is often faster than the method 
of  variation of parameters. 
 
The method involves the substitution of a form for Py  that resembles ( )r x , with 
coefficients yet to be determined, into the ODE.    
If ( ) k xr x c e= , then try P

k xy d e= , with the coefficient d to be determined. 

If ( ) cos or sinr x a kx b kx= , then try P cos siny c kx d kx= + , with the coefficients c 
and d to be determined. 
If  ( )r x   is an nth order polynomial function of x, then set  Py   equal to an nth order 
polynomial function of x, with all (n + 1) coefficients to be determined. 
 
However, if  ( )r x   contains a constant multiple of either part of the complementary 

function ( )1 2ory y , then that part must be multiplied by x in the trial function for  Py . 
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Example 1.08.1   (Example 1.07.2  again) 
 
Find the general solution of the ODE    y"  +  2y'  −  3y  =  x2  +  e2x  . 
 
 
A.E.: λ 2  +  2λ  −  3  =  0 
 
⇒ (λ + 3) (λ − 1)  =  0    ⇒   λ  =  −3, 1 
 
C.F.: C

3x xy A e B e−= +   
 
Particular Solution by Undetermined Coefficients: 
 
( ) 2 2xr x x e= + , so try  2

P
2xy ax bx c d e= + + +   

 
Then  y"  +  2y'  −  3y  =   

2

2

2

2

2

2

2 4

4 2 4

3 3 3 3

1 0 1

2

3

0

P

P

P

x

x

x

x

a d e

a x b d e

a x b x c d e

x x

y

y

e

y

r

+

+ + +

+ − − − −

= + +

′′←

′← +

+

← −

← =

 

Matching coefficients: 
 

2 1
3: 3 1x a a− = ⇒ = −  

 

( )1 1 4
3 9: 4 3 0x b b− − = ⇒ = −  

 

( ) ( )0 1 4 14
3 9 27

2 3 4: 2 2 3 0
3 9

x c c + − + − − = ⇒ = − = − 
 

 

( )2 1
5: 4 4 3 1xe d d+ − = ⇒ =  

 
G.S.: ( ) ( ) ( )C Py x y x y x= +    
 
Therefore  

( ) ( )23 21 1
5 27 9 12 14x x xy x A e B e e x x−= + + − + +  
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Example 1.08.2    
 
Find the general solution of the ODE  

2

2
24 4 xd y dy y e

dx dx
−+ + =  

 
 

( )22A.E.: 4 4 0 2 0 2, 2λ λ λ λ+ + = ⇒ + = ⇒ = − −  

( )C
2C.F.: xy Ax B e−= +  

P.S.: 
r(x)  =  e–2x ,  but both  e–2x  and  x e–2x  are in the C.F. 
Therefore try P

2 2xy c x e−= . 

( ) ( ) ( )( )2 2 2
P P P

2 24 4 4 8 2 4 2 2 4 x xy y y c x x x x x e e− −′′ ′+ + = − + + − + + =  

( ) ( )( )24 8 4 8 8 2 1c x x⇒ − + + − + + =  
1
2c⇒ =  

Therefore the general solution is  
( ) ( )2 21

2
xy x x Ax B e−= + +  

 
Again, this is much faster than variation of parameters. 
However, the method of variation of parameters may be employed regardless of the form 
of the right side  ( )r x , while the method of undetermined coefficients may be used only 

for a narrow range of forms of  ( )r x . 
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