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1.09 Laplace Transforms

Laplace transforms can convert some initial value problems into algebra problems. It is
assumed here that students have met Laplace transforms before. Only the key results are
displayed here, before they are employed to solve some initial value problems.

The Laplace transform of a function f (t) is the integral

F(s) = £{f(t)} = joooe_Stf(t)dt

where the integral exists.
Some standard transforms and properties are:

Linearity:
£{af(t) + bg(t)} =as{f(t)} + bs{g(t)} (ab=constants)

Polynomial functions:
tn—l

=g = ) (n-1)!

First Shift Theorem:
L{f(t)} = F(s) = f{eatf(t)} = F(s-a)

n-1,at
= :51{—1 }: et ang st 1 _L_L ¢
s—a (s_a) (n—l)!

Trigonometric Functions:

at o

sf{eatsina)t} = + - g1 + _ & sin wt
(s-a) +o’ (s—a) + o’ o

+{e*cosot | = _sta o ga) st A L eatgggg

Derivatives:
A1) =s2{fn)} - £(0)
L{f7(t)} =SS f(t)} - s f(0) - £'(0)
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Integration:

0 (t<a
where H (t—a) = {1 Etia) is the Heaviside (unit step) function.

Dirac delta function
x{5(t—a)} =g @

where Ld f(t)s(t—a)dt = { fga) ((alf< Cc:raa<>dd)) :

For a periodic function f (t) with fundamental period p,

Convolution:

LHF()G(s)} = £7{F(s) )+ 7{G(s)}
where (f * g)(t) denotes the convolution of f (t) and g(t) and is defined by
t
(f*0)(t) = [ f(r)g(t-r)dz
The identity function for convolution is the Dirac delta function:
S(t—a)xf(t) = f(t-a)H(t-a) = &(t)*f(t) = f(t)
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Here is a summary of inverse Laplace transforms.

F(s) f ()
I . e Uf (1) dt f(t)
1 . tn—l
~ (heu
s" (et (n-1)!
1 1
Js Jrt
- at
s—a €
1 (e "t e
(s—a) (n—1)!
e ® S(t-a)
e—aS
S H((t-a)
1 sin ot
s? + w? @
1 e® sin wt
(s—a) +w? o
( )12 . e® sinh bt
s—a) -b b
-a) t
(s—af + o’ e cos wt
_(s-a) e® cosh bt
(s—a)’ —b?

F (s) f(t)
1 1-cos wt
7 2 -
S is + o ) >
1 wt—sin ot
s? (s% + w? o3
1 sin ot — wt cos mt
2
o) T
S ; t sin wt
(32 +a)2) 2w
s? — @?
5 t cos wt
(s2 +a)2)

as® s(e"IS —1)

{s"F(s) — s"'f(0)
— s"2£N(0) - s"*f0(0)

Square wave,
period 2a,
amplitude 1

Triangular wave,
period 2a,
amplitude a

Sawtooth wave,

period a,
amplitude b

d"f

_sf0D @) 10D ()} dt”

LE)
S

dF
ds

Ié f(r)dr

—t (1)
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Example 1.09.1 (Example 1.08.2 again)

Find the general solution of the ODE
d?y
dx?

LN 4y = e~
dx

The initial conditions are unknown, so let a =y(0) and b =y (0).
Taking the Laplace transform of the initial value problem,

(SZY—s-a—b)+4(sY—a)+4Y _ 1
S+2
= (s"+4s+4)Y = as+4a+b + 1
S+2
as+4a+b 1 (s+2) 2a+b 1
= + = a + +

(3+2)2 (s+2)3 (s+2)2 (s+2)2 (5+2)3

n-1,—ax
Note that #~* 1 b= X_°
(s+a) (n-1)!

4 1 4 1 =l 1
= y=a/t {s+—2} + (2a+h)s {(S+2)2} + 7/ {(s+2)3}

Introducing the new arbitrary constants A=2a+ b and B =a, we recover the general
solution

y = (3x°+Ax+B)e ™
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Example 1.09.2 (Example 1.07.1 again)

Find the complete solution to the initial value problem

2
9%, 9%, 26x = 105(t-3)
dt dt
(where o (t—a) isthe Dirac delta function),
together with the initial conditions  x(0) =x" (0) = 0.

Let X(s) = £ {x(t)} be the Laplace transform of the solution x(t).
Taking the Laplace transform of the initial value problem,
(X =0-0) + 2(sX - 0) + 26X =10e™>

-3s
= (s°+25+26)X =106 = X = _M0e ™ #{ 2e7 sin5t e
(s+1)°+5°
By the second shift theorem, it then follows that the complete solution is

(-3

x(t) = 2e tsin5t H(t-3) = 2e " /sin5(t-3)H (t-3
t—>t-3

This is a considerably faster solution than that provided by the method of variation of
parameters (Example 1.07.1).

OR

10¢ 7| 2e7tsi = #{2esinbt=5(t-
X(s) = )T = #{ 27 sin5t |- £ {5(t-3)} = £{2 5t+5(t-3) |

Using the convolution properties of the Dirac delta function,

x(t) = (29_t sin 5t )*5(t—3) = 2e_(t_3)sin5(t—3) H(t-3)
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1.10 Series Solutions of ODEs

If the functions p(x), q(x) and r(x) in the ODE
1Y b0 4 a(y = ()
dx? dx
are all analytic in some interval x, —h < x < x,+h (and therefore possess Taylor series
expansions around x, with radii of convergence of at least h), then a series solution to the
ODE around x, with a radius of convergence of at least h exists:

& My
y(x) = nZ:O<’:1H(X—xo)”, a, = Y (%)

n!

Example 1.10.1

Find a series solution as far as the term in x°, to the initial value problem
d’y  _dy  x
— - X— + ey = 4; 0)=1, y'(0)=4
dX2 dX y y( ) y( )

None of our previous methods apply to this problem.
The functions —x, €* and 4 are all analytic everywhere.

The solution of this ODE, expressed as a power series, is
n 0 m O
y(x) = y(0) + y'(0)x + %xz + y?’—(!)x3 + ...

But y(0)=1 and y'(0) =4.

From the ODE,

y'=xy —ey+4 = y(0)=0-y(0)+4=-1+4=3
Differentiating the ODE,

y" =y +xy" —efy-ey +0 = y"(0) =y (0)+0-y(0)-y(0) =-1
Therefore the first four terms of the solution are

y(x) =1+ 4x + gxz —%xg’ + ..
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Example 1.10.2

Find the general solution (as a power series about x = 0) to the ordinary differential
equation
d’y

vl X’y =0

Let the general solution be y(x Z

Then y'(x) = Znanx and y'(x) = i n(n-1)a,x"2
n=2

n=1

Substitute into the ODE:

0

> n(n- 1)anx”2+x22anx -0 = Z n-1)a,x"" +§:anx”+2:0
n=0

n=2
Shift the indices on each summatlon so that the exponent of xis niin both cases:

= Y (n+2)(n+1)a,, X" + > 8, ,x" = 0
n=0 n=2
Bring the two summations together for all terms from n = 2 onwards:

= 2x1a,x’ + 3x2a,x" + i((n+2)(n+1)an+2 +a,,)x" =0

But this equation must be true regardless of the choice of x.
Therefore the coefficient of each power of x must be zero. = a, =a; =0

Bae, e
d - 02 (n=234,.. S = 4,5,6, ...
I ) = a=nDy )
% _ B - T
T RT3 T T2 % T a2
-a + + - + +
aﬁ = 4 — ao — ao’ ag — as — ai _ ai

8x7 56x12 672 Ox8  72x20 1440’

and a, =y(0) and a, =y'(0) are arbitrary.

Therefore the general solution is

X) = x+0x2+0x3’—ix4—ix5’+0x€’+0x7
Y(x) =2 + & 12 20
Y WY W LU e

672 1440
or

y(x) = ao(l - X+ g - ) + ai(x — X+ X - )
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1.11 The Gamma Function

The gamma function F(x) is a special function that will be needed in the solution of

Bessel’s ODE. F(x) is a generalisation of the factorial function n! from positive

integers to most real numbers. For any positive integer n,
nl=nx(n-1)x(n-2)x...x3x2x1 (with 0! defined to be 1)

When x is a positive integer n, | T'(n)=(n-1)!

We know that n!=nx(n-1)!
The gamma function has a similar recurrence relationship: F(x+1) = x.l“(x)

. . _ ) _ I(x+1)
This allows F(x) to be defined for non-integer negative x, using F(X) = »
For example,
it can be shown that F(%) =z

r(+3) r-%)  az
= I(-1)= 2= _dr = T1(-3) = 2/ = 4 , etc.
( 2) _% ( 2) _% 3
pd
['(x) is infinite when x is a negative s =I(x)

integer or zero. It is well defined for all
other real numbers Xx.

In this graph of y=T"(x),

|

|

|

|

|

|

|

|

values of the factorial function : :
(at positive integer values of x) - | 2 3 4

|

|

|

|

|

|

are highlighted. If
|

There are several ways to define the gamma function, such as

I'(x) = I:tx_le_tdt (x>0)

and
X

F0) = i, S erD).. . (xa )
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A related special function is the beta function:

r(m)r(n)

1 /2
B(m,n) = J tm_l(l—t)n_ldt = ZI” sin?™ 19 cos?" Lo de =
0 0 I'(m+n)

Among the many results involving the gamma function are:

For the closed region V in the first octant, bounded by the coordinate planes and the

x\* [y Y
surface (—j J{Bj +(—j =1, with all constants positive,
a C

= [ty taxay gz - 2P T(&)T(3)r(7)
“ AT

For the closed area A in the first quadrant, bounded by the coordinate axes and the curve

a B
(_) +(%) = 1, with all constants positive,

S—

[ oy - 25 DA
A o Tl d )

Example 1.11.1

Establish the formula for the area enclosed by an ellipse.

2 2
The Cartesian equation of a standard ellipse is (ij +(—j =1.
a

Set a=p4=2 and p=q=1,then

apt T Hrd r(3 2
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