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1.11 The Gamma Function

The gamma function F(x) is a special function that will be needed in the solution of

Bessel’s ODE. F(x) is a generalisation of the factorial function n! from positive

integers to most real numbers. For any positive integer n,
nl=nx(n-1)x(n-2)x...x3x2x1 (with 0! defined to be 1)

When x is a positive integer n, | T'(n)=(n-1)!

We know that n!=nx(n-1)!
The gamma function has a similar recurrence relationship: F(x+1) = x.l“(x)

. . _ ) _ I(x+1)
This allows F(x) to be defined for non-integer negative x, using F(X) = »
For example,
it can be shown that F(%) =z

r(+3) r-%)  az
= I(-1)= 2= _dr = T1(-3) = 2/ = 4 , etc.
( 2) _% ( 2) _% 3
pd
['(x) is infinite when x is a negative s =I(x)

integer or zero. It is well defined for all
other real numbers Xx.

In this graph of y=T"(x),
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There are several ways to define the gamma function, such as

I'(x) = I:tx_le_tdt (x>0)

and
X

F0) = i, S erD).. . (xa )
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A related special function is the beta function:

r(m)r(n)

1 /2
B(m,n) = J tm_l(l—t)n_ldt = ZI” sin?™ 19 cos?" Lo de =
0 0 I'(m+n)

Among the many results involving the gamma function are:

For the closed region V in the first octant, bounded by the coordinate planes and the

x\* [y Y
surface (—j J{Bj +(—j =1, with all constants positive,
a C

= [ty taxay gz - 2P T(&)T(3)r(7)
“ AT

For the closed area A in the first quadrant, bounded by the coordinate axes and the curve

a B
(_) +(%) = 1, with all constants positive,

S—

[ oy - 25 DA
A o Tl d )

Example 1.11.1

Establish the formula for the area enclosed by an ellipse.

2 2
The Cartesian equation of a standard ellipse is (ij +(—j =1.
a

Set a=p4=2 and p=q=1,then

apt T Hrd r(3 2
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1.12 Bessel and Legendre ODEs

Frobenius Series Solution of an ODE

If the ODE
P(x)y" + Q(x)y" + R(x)y = F(x)
is such that P(x,) =0, but (x—xo)Q(X) ., (x=%,)"=— and

P(x)

analytic at x,, then x =X, isa regular singular point of the ODE.

A Frobenius series solution of the ODE about x =X, exists:

(9 = > (xx)""

for some real number(s) r and for some set of values { Cn } :

Example 1.12.1

Find a solution of Bessel’s ordinary differential equation of order v, (v > 0),

X2y" + Xy + (xz—vz)y =0

P0)=0 = x,=0 isasingular point.

(x—xo)% = xX—X2:1 : (x—xo)2 R()
F(x)
P(x)

Therefore x, =0 is aregular singular point of Bessel’s equation.

0
—_
>
~
>
N

and =0

Substitute the Frobenius series y(x) = > ¢, x""" into the ODE:
n=0

00

i(n+r)(n+r—l)cnx”+r_2+2 + ) (n+r)c, XM
n=0

o

n=

Q0 0
n chxn+r+2 _ sz CnXn+r -0
n=0 n=0




ENGI 9420 1.12 Bessel and Legendre ODEs Page 1.41

Example 1.12.1 (continued)

Adjust the index on the third summation so that the exponents of x match:

icn [(n+r)(n+r—l+1) - vz]x“Jrlr + icn_zxmrr =0
0 n=2

n=

The summations can be combined for n = 2 onwards:
(rz—vz)coxr + [(r+1)2 - J XLy Z[( (n+r)’ - 1/2)cn + cn_z}xn” =0

Setting the coefficient of X" (the lowest exponent present) to zero generates the indicial

equation r’—v2 =0 = r==zv.

Examining the positive root, the series now becomes

0+ [(v+1)2 - } x4 Z[( n+v) - 1/2)0n + cn_zjxn+|r =0

= (2v+l)ex™ 4 i[(ZnVJrnz)cn + cn_z}xn+r =0
n=2

But v>0 = 2v+1#0 = ¢ =0

—C
For n>2, ¢, = —22_

n(n+2v)
It then follows that this series must be even: 0=c¢, =c;=c;=... or ¢, ;=0 VkeN

For the even order terms, replace the index n Dby the even index 2k (where k is any
natural number) and pursue the recurrence relation down to c,:

. - _ Cok2  _ (-1) c _ (-1 (1) c
7 2k(2k+2v)  2%k(k+v) AR T 2%k (k+v) 28 (k-1)(k-1+v) 2k2)
R R o
2%k(k+v) 22(k-1)(k-1+v) 2°(k-2)(k-2+v) 23
_1)k 3
1)-(k+v)(k=1+v)(k=2+v)...(k=[k=1]+v) 2%

" 2K(k-1)(k-2)...(k [k~
—1)¢

_ (-
T AT (k) (v k1) (v +1)
. (-1)" T(v+1)
2 22kk!(v+k)(v+k -1)...(v+1) T'(v+1) 0
= Cy = (_1)k T(v+l)c, |= i-v!co if v=0,12,...

2KIC (v +k +1) 2%k (v+k)!
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Example 1.12.1 (continued)

One Frobenius solution of Bessel’s equation of order v is therefore

I8 = ST ()Yt e = 6T ()3, (9

where J, (x) is the Bessel function of the first kind of order v.

It turns out that the Frobenius series found by setting r = —v generates a second linearly
independent solution J_,(x) of the Bessel equation only if v is not an integer.
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The Bessel ODE in standard form,

2.,m

X2y" + Xy’ + (xz—vz)y =0
has the general solution

y(x) = AJ,(x) + BY,(x)
unless v is not an integer, in which case Y, (x) can be replaced by J_, (x) .
Y, (x) is the Bessel function of the second kind.

When v isaninteger, J_, (x) = (-1)" J, (x).
Graphs of Bessel functions of the first kind, for v=0,1,2:

-
0.8+
0.6
0.4

(), 2

0.4+

The series expression for the Bessel function of the first kind is

3, (x) = Z%(gfkw

This function has a simpler form when v is an odd half-integer. For example,

2 . 2
Jy, (%) = /Esmx, I (X) = /Hcosx
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1.12 Bessel and Legendre ODEs

ENGI 9420
The Bessel function of the second kind is
Y, (x) = Jv(x)cos_(wr) - J_,(x)
sin(vz)
= — 00

Y, (x) isunboundedas x —0: Jim Y, (x)
Bessel functions of the second kind (all of which have a singularity at x = 0):

i

{

[ )
]

)

|

i

Bessel functions arise frequently in situations where cylindrical or spherical polar

coordinates are used.

A generalised Bessel ODE is
o d?y dy 2.2,2C 2 2.2
g (-2a)x ¢ (b%*x* + (8% =c?))y = 0
whose general solution is
y(x) = xa(AJv(bxc) + BY,,(be))

For a generalised Bessel ODE with a >0, whenever the solution must remain bounded

as x -0, the general solution simplifiesto  y(x)=AxJ, (bx®).
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Example 1.12.2

Find a Maclaurin series solution to Legendre’s ODE

d’y dy
(1-x )dx2 - 2xd— + p(p+1l)y =0

in the case when p is a non-negative integer.

P(x)=1-x* = P(0)=1#20 = x=0 isaregular point of the ODE.

Let the general solution be y(x) = > ax".
n=0

Then y'(x) = inanx”_1 and y'(x) = i n-1)a,
n=1 n=

Substitute into the ODE:

2 n(n-t)a (x"2 )

0

Z‘b n-1)a,x"" ( (n-1) = 2n + p(p+1))a,x" =0
n=

But the first two terms (n=0 and n = 1) of the first series are both zero.

nanx +pr+1an =0

i n(n-1)ax"? =0+ 0+ > n(n-1)ax"? = > (n+2)(n+1)a,,,x"
n=0 n=2 n=0
after a shift in indices. Returning to the full ODE,

i(n+2)(n+l)an+2xn + i(—n2+n—2n +p’+p)ax" =0
n=0

=X ni;)((n+2)(n+l)an+2 + (—(nz— p’) - (n- p))an)x” =0

Matching coefficients of x", (n=0):

(n+2)(n+D)ay,, = (W -p*n-play = 2, = (n(_nf)z()tflgl)

(n+p-1)(n-p-2)
n(n-1)

oo, .,

a,, (n=>2),with a, and a, arbitrary.

Shifting indices, a, =

Rearranging slightly, a, =
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Example 1.12.2 (continued)

_ —p(p+1) _ —(p-1)(p+2)
T RT T 0 BT T g, W
o - —(P=2)(p+3)  _ +p(p+1)(P-2)(P+3)
4 4%x3 4x3x2x1 ’
~—(p=-3)(p+4) . +(p-1)(p+2)(p-3)(p+4)
% = 5x4 B BEx4x3x2x1 '
_Z(p=4)(p+8) - =P(P+1)(p=2)(p=3)(P=4)(P*5) . oo
6x5 4 O6x5x4x3x2x1 ’

It then follows that the general solution to Legendre’s ODE is

yp(x) = ao[l _ %Xz N p(p+1)(p:”—2)(p+3) y

p(p+1)(P-2)(p+3)(P-4)(P+5) , j

6!
. a{x _(p=D(p+2) o, (P=D)(P+2)(P=3)(P+4)

3! 5!
_(P=1)(p+2)(P=3)(P+4)(P-5)(P+6) s j
7
where a, and a, are arbitrary constants. This series converges on [-1, 1] .

These solutions y(x) = > a,x" are Legendre functions of order p.
n=0

If p isanon-negative integer then
_(P=p)(p+p~+1)

P2 (p+2)(p+l)

= a,,, =0 VvVkeN

a a,=0 = a,, =0 =

p+2
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If we set a =0 when p is even, then the series solution terminates as a p" order
polynomial (and therefore converges for all x).

If we set a, =0 when p is odd, then the series solution terminates as a p" order
polynomial (and therefore converges for all x).

With suitable choices of g, and a,, so that R, (1)=1,

we have the set of L egendre polynomials:

R(x)=1, R(x)=x, R (x)=
P (x)=3(5x"-3x), P(x)=4(35x"-30x"+3), R(x)=
P, (x) =£5(231x° - 315x" +105x* - 5), etc.

Each ) is a solution of Legendre’s ODE with p= n.

(3x* -1),
(63x —70%° +15x),

Il
OOll—‘ N

fs
P (

Rodrigues’ formula generates all of the Legendre polynomials:
1 d",, 0
Pa(x) = 2“n!d?((x -1) )

Among the properties of Legendre polynomials is their orthogonality on [-1, 1]:
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[Space for any additional notes]

END OF CHAPTER 1
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