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2.02 Summary of Matrix Algebra
Some rules of matrix algebra are summarized here.
The dimensions of a matrix are (# rows x #columns) [in that order].

Addition and subtraction are defined only for matrices of the same dimensions as each
other. The sum of two matrices is found by adding the corresponding entries.

Example 2.02.1
120+—121_041
0 3 2 0 10| |0 4 2

Scalar multiplication:
The product cA of matrix A with scalar ¢ is obtained by multiplying every element in
the matrix by c.

Example 2.02.2
g[120]_[510 0
0 3 2| |0 15 10

Matrix multiplication:
The product C = AB of a (p x ) matrix A with an (r x s) matrix B is defined if and
onlyif g=r. The product C has dimensions (p x s) and entries

q
Cij = kzlaikbkj

or ¢; = (i" row of A) « (j" column of B) [usual Cartesian dot product]

Example 2.02.3
3
ag o |12 0], _[@x3+2x2+0x0)] _[7
10 32 . [ (0x3 +3x2 + 2x1)| (8

Note that matrix multiplication is, in general, not commutative: BA # AB.
In this example, BA is not even defined!
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The transpose of the (m x n) matrix A ={ aj } is the (n x m) matrix A" ={ ai }.
The transpose of the product AB is (AB)" = B'A".

Example 2.02.4

120 ’ O

A = ., B=|2| = A"=|2 3|, BT=[3 2 1]

03 2
1 0 2

10
= B'AT =[3 2 1]|2 3|=[7 8]=(AB)
0 2

A matrix is symmetric if and only if AT = A (which requires aji = a; forall (i, j) ).

A matrix is skew-symmetric if and only if AT = -A.
A square matrix has equal numbers of rows and columns.
If a matrix is symmetric or skew-symmetric, then it must be a square matrix.

If a matrix is skew-symmetric, then it must be a square matrix whose leading diagonal
elements are all zero.

Example 2.02.5

1 5 0 -2
5 2 -1 7 . )
A = IS symmetric.
0 -1 1
-2 7 1 4]
0 5 0 -2
-5 0 -1 7 . .
B = is skew-symmetric.
0 1 0 -1
2 -7 1 0

Any square matrix may be written as the sum of a symmetric matrix and a skew-
symmetric matrix.
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A square matrix is upper triangular if all entries below the leading diagonal are zero.
A square matrix is lower triangular if all entries above the leading diagonal are zero.
A square matrix that is both upper and lower triangular is diagonal.

Example 2.02.6

-1 0
A = 2 £ is upper triangular.
0O 0 3
1 00
AT =|-1 2 0] islower triangular.
1
0t 3
1 00
B=|0 2 0 is diagonal.
0 0 3

The trace of a diagonal matrix is the sum of its elements. = trace(B) = 6.

The diagonal matrix whose diagonal entries are all one is the identity matrix I.
Let I, represent the (n x n) identity matrix.
InA = Al, = A forall (m x n) matrices A.

If it exists, the inverse A™* of a square matrix A is such that
ATA = AAT =

If the inverse A exists, then A™ is unique and A is invertible.

If the inverse A~ does not exist, then A is singular.

Important distinctions between matrix algebra and scalar algebra:

ab = ba for all scalars a, b; but
AB = BA istrue only for some special choices of matrices A, B.

ab=0 = a=0and/orb=0, but
AB =0 can happen when neither A nor B is the zero matrix.

Example 2.02.7

11 1 -1 00
A = , B= = AB= =0
R oo
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2.03 Determinants and Inverse Matrices

The determinant of the trivial 1 x 1 matrix is just its sole entry:
det[a] = a.

The determinant of a 2 x 2 matrix A is
b

= ad —-bc
d

det(A) = |A| = ‘a

For higher order (n x n) matrices A = { a;; } the determinant can be evaluated as follows:
The minor Mij of element 8j is the determlnant of order (n — 1) formed from matrix A

by deleting the row and column through the element aj

The cofactor Cij of element 3 is found from Cij = (—1)'+J I\/Iij

The determinant of A is the sum, along any one row or down any one column, of the
product of each element with its cofactor:

det(A Za” ij (i=anyoneof 1,2,...,n)
or

det(A Zalj ij (i=anyoneof 12,..,n)

If one row or column has more zero entries than the others, then one usually chooses to
expand along that row or column.

The determinant of a triangular matrix is just the product of its diagonal entries.
det(1)=1

Example 2.03.1

Evaluate the vector (cross) product of the vectors a=1i+2j+3k and b=2i+4j+3K.

Expanding along the top row,

— +
J23 2 4

¢11

Alﬂ

= +(2x3 - 4x3)i — (1x3 - 2x3)j + (1x4 — 2x2)k
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det(AB) = det(BA) = det(A) det(B)
det(A") = det(A)
det (A)=0 = A issingular.

adj(A
det(A) =0 = at =9

det(A)
where adj(A) is the adjoint matrix of A, which is the transpose of the matrix of cofactors
of A. For a (2x2) matrix, the formula for the inverse follows quickly:

b d -b
A = a = Al = 1 (ad #bc)
c d ad-hc|-c a

Example 2.03.2

2 1 4 -1
A = = Al = 1

3 4 5/-3 2

For higher order matrices, this adjoint/determinant method of obtaining the inverse
matrix becomes very tedious and time-consuming. A much faster method of finding the
inverse involves Gaussian elimination to transform the augmented matrix [A | I] into the
augmented matrix in reduced echelon form [I | A™].

Example 2.03.3

-1 1 0
Find the inverse of the matrix A = | 3 2 1].
-2 -1 -1
-1 1 0|1 0O
[All]=| 3 2 1]0 1 0
-2 -1 -1|0 0 1
Multiply Row 1 by (-1):
-1 0]|-10 0
R, x-1
e 3 2 1/ 010
-2 -1 -1 0 0 1
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Example 2.03.3 (continued)

From Row 2 subtract (3 x Row 1) and
to Row 3 add (2 x Row 1):

h -1 o|/-100
0 5 1|3 10
0 -3 -1|-2 0 1

R, —3R,
R, + 2R,

All entries below the first leading one are now zero.
The next leading entry isa ‘5’. Scale it downtoa ‘1.
Multiply Row 2 by (1/5):

1 -1 0[-10 0

R, x % 1] 3 1
—=> o [ #2130
0 3 -1|-2 0 1

Clear the entry below the new leading one.
To Row 3 add (3 x Row 2):

1 -1 0 -1 00
1| 3 1
TR, |0 W 3] 0
872 2 _1 3
0 0 —5]-5 5 1

The next leading entry is a “-2/5’. Scale it downtoa ‘1’.
Multiply Row 3 by (-5/2):

1 -1 0|-1 0 O
1 3 1
—>R3x_% o 1 ¢ & ¢t o
1 _3 _5
Y 7 72 7%
From Row 2 subtract (1/5 x Row 3):
n 1R 1 -1 0|-1 0 O
253 1 1 1
—2 535100 103 % 1
1 _3 _5
0 0 3 T2 73
To Row 1 add Row 2:
1003 5 3 11
R,+R
—25 [nyA*]=o 10| + 1 % :Al—%l 1
1 _3 _5 _ _
oo 1| &+ -3 -3 3 -5
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Example 2.03.3 (continued)

As a check on the answer,

1 -1 1 1||-1 1 O 1 2 00
AA==1 1 1| 3 2 1|= > 0 2 0]=1I
1 3 5|2 -1 -1 0 0 2

Determinants may be evaluated in a similar manner:

Every row operation that subtracts a multiple of a row from another row produces a
matrix whose determinant is the same as the previous matrix.

Every interchange of rows changes the sign of the determinant.
Every multiplication of a row by a constant multiplies the determinant by that constant.

Tracking the operations performed in Example 2.03.3 above (that reduced matrix A to the
identity matrix I),

Operations Net factor to date:
Multiply Row 1 by (-1): x (-1)
From Row 2 subtract (3 x Row 1) and x (-1)
to Row 3 add (2 x Row 1): x (1)
Multiply Row 2 by (1/5): x (=1/5)
To Row 3 add (3 x Row 2): x (-=1/5)
Multiply Row 3 by (-5/2): x (+1/2)
From Row 2 subtract (1/5 x Row 3): x (+1/2)
To Row 1 add Row 2: x (+1/2)
Therefore
-1 1 0
detl = %xdetA = detA=| 3 2 1| =2(detl) =2
-2 -1 -1
One can also show that
-1 1 0 -1 1 1 _ -1 1 1
: L adj(A) 1
adjj| 3 2 1||=]1 1 1| => A = == 1 1 1
det(A)

-2 -1 -1 1 -3 -5 1 3 -5
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2.04 Eigenvalues and Eigenvectors

¥

Example 2.04.1
In R®, the effect of reflection, in a vertical plane mirror
through the origin that makes an angle 6 with the x-z g
coordinate plane, on the values of the Cartesian X
coordinates (X, y, z), may be represented by the matrix
equation

Xoew +C0s20 —sin20 0 || X4
Xoew = RpRoa OF | Yoo | = | —SIN20  —c0s20 0 || Y,q

Znew 0 0 1 Zold

The reflection matrix R , may be constructed from the composition of three consecutive

operations:

rotate all of R® about the z axis, so that the mirror is rotated into the x-z plane; then
reflect the y coordinate to its negative; then

rotate all of R® about the z axis, so that the mirror is rotated back to its starting position.

With the help of some trigonometric identities, one can show that
cos(-0) —sin(-8) 0 |[1 0 0 |[cosd —-singd 0 +c0s20 —sin20 0
sin(-6) cos(—#) 0 [0 -1 O ||sind cosd O |=|-sin20 —cos26 O
0 110 0 1 0 0 1 0 0 1

Obviously, any point on the mirror does not move as a result of the reflection.

Points on the mirror have coordinates (r cos 8, —r sin 6, z), where r and z are any real
numbers.

[Note that two free parameters are needed to describe a two-dimensional surface.]

rcose cos2¢ —sin20 0 || rcosé
X =|-rsind| = R X =|-sin20 -cos20 0 ||-rsind
z 0 0 1 z
r(cos26cos@ + sin26sin6) rcos(20-0) rcosd
= | r(-sin26cos@ + cos26sind) | = | -rsin(20-0) | = | -rsind | = X

z z z
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Therefore any member of the two dimensional vector space

cosd 0
X =4<r|=sin@| + z| 0 (I’,ZER)
0 1

is invariant under the reflection, (R9>‘< = >‘<) The basis vectors of this vector space,

cosé 0
—sing| and | O |, are the eigenvectors of R , for the eigenvalue +1,
0 1
(as is any non-zero combination of them).

Any point on the line through the origin that is at right ¥
angles to the mirror, (r sin 8, r cos 6, 0), will be
reflected to —(r sin 8, r cos 9, 0).
For these points, R X =-1X . &
The basis vector of this one-dimensional vector space, g
sin@ *
cosd |, is the eigenvector of R ,for the eigenvalue -1,
0

(as is any non-zero multiple of it).

The zero vector is always a solution of any matrix equation of the form Ax =1 x.
x =0 is known as the trivial solution.

Non-trivial solutions of A x = A x are possible only for A = +1 and for A =-1 in this
example (with A=R ).

The eigenvectors for 2 = +1 correspond to points on the mirror that map to themselves
under the reflection operation R ,.

The eigenvectors for 4 = -1 correspond to points on the normal line that map to their own
negatives under the reflection operation R ,.

No other non-zero vectors will map to simple multiples of themselves under R ,.

We can summarize the results by displaying the unit eigenvectors as the columns of one
matrix and their corresponding eigenvalues as the matching entries in a diagonal matrix:

sin@ cos@ O -1
X =|cos@d -sin@ 0| and A =
0 0 1

O L O
, O O

0
0
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Note that the matrix X is orthogonal, (X™* = X" - its inverse is the same as its transpose)
[In this case, X happens to be symmetric also, so that X' = X" = X]

Also note that X‘lRHX =A:

sind cos@ 0] cos28 —sin28 0|/ sin@ cosd O -1 0 0
cosd —sin@ 0| —-sin20 —cos20 0|/ cosd -singd 0| = 0 10
0 0 1 0 0 1 0 0 1 0 0 1

Therefore the matrix X of unit eigenvectors of R , diagonalizes the matrix R ,.

This is generally true of any (n x n) matrix that possesses n linearly independent
eigenvectors (some (n x n) matrices do not).

Note that
Ax=x = (A-A1)x=0

The solution to this square matrix equation will be unique if and only if det (A-41)#0.
That unique solution is the trivial solution x=0.
Therefore eigenvectors can be found if and only if A issuch that det (A—-41)=0.

General method to find eigenvalues and eigenvectors

det (A — A 1) =0 is the characteristic equation from which all of the eigenvalues of the
matrix A can be found. For each value of J, the corresponding eigenvectors are

determined by finding the non-trivial solutions to the matrix equation (A -1 1)x=0.
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Example 2.04.2

-2 1
Find all eigenvalues and unit eigenvectors for the matrix A = { 1 2]

Characteristic equation:
1

—2-1
= P2 +4,+4-1=0 = P+4+3=0 = (A+3)+1) =0
Therefore the eigenvalues are

det(A-A1)=0 = yzgz ‘:0 = (-2-2)-1=0

|A=-3 and A= -1

N
w

(a-Camg=o = | F -]

= Xx+Yy = 0 (onlyone independent equation)
= y = =X

+1
= any non-zero multiple of [ J is an eigenvector for 1 = -3.

+1
The unit eigenvector is %{ J (or its negative).

s

= -1:

(A-(-Di)x=0 = {_21“ —21+1Hﬂ B B}

—-Xx+y = 0 (only one independent equation)
y =X

Uy

1
= any non-zero multiple of L} is an eigenvector for 1 = —1.

1
The unit eigenvector is % [J (or its negative).

A matrix X that diagonalizes A (by X'AX = A) s

X _ V21l N
2 |-1 1 0 -1
One can quickly show that

o B P00

END OF CHAPTER 2
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3.

Numerical M ethods

The majority of equations of interest in actual practice do not admit any analytic solution.

. . _ 2 .
Even equations as simpleas x=¢€ * and | :J.e *dx have no exact solution. Such

cases require numerical methods. Only avery brief survey is presented here.

Sectionsin this Chapter:

3.01
3.02
3.03
3.04

Bisection

Newton’s M ethod

Euler’'sMethod for First Order ODEs
Fourth Order Runge-K utta Procedure (RK4)
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3.01 Bisection

Example 3.01.1

Find the solution of x =€, correct to 4 decimal places.

From a sketch of the two curves y = x b

and y=e %, it is obvious that the only y=egl 4 Yo
solution is somewhere in the interval \

0, 1).

Let f(x)=x—e*.

Clearly fO)=-1<0 y=a?
and f(1) = 1-le > 0 d , , >
f (x) is continuous and changes sign only 0 | 1 X

onceinside (0, 1). y <z

Halve the interval repeatedly and retain the half with a sign change:
signl f{x)) — - ¥ +

I
x 0 %

f (0.50000) = -0.1065...<0 = rootisin (0.50000, 1.00000)

sign( f1z)) =y + +

x ] % 1

f(0.75000) = +0.2776...>0 = root isin (0.50000, 0.75000)

b | — o

sign( f(x)) —'-l' +
K N

f(0.62500) = +0.0897...>0 = root isin (0.50000, 0.62500)

sign( f(x)) - —"l'
| — |
1 8 3 3

* v 768 7 1

f
f (0.56250) = —0.0072...<0 = rootisin (0.56250, 0.62500)
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Example 3.01.1 (continued)

Thismethod is slow and requires eighteen steps before the change in x is small enough to
leave the fourth decimal place undisturbed with certainty:
f (0.567142) = -0.0000...<0 = rootisin (0.567142, 0.567146)

This method is equivalent to zooming in graphically by repeated factors of 2 until the
desired accuracy is obtained. The result of a faster graphical zoom, sufficient to
determine the solution to five decimal places, is displayed here:

y==x

0,567

0.5a871 - -

0.5871 X 0.5872

Correct to four decimal places, the solutionto x=¢e * is x = 0.5671 .

—0.5671

A caculator quickly confirmsthat e ~ 0.5671.

A spreadsheet to demonstrate the bisection method for this example is available from the
course web site, at "www .engr .mun.ca/~ggeorge/9420/demos/".
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3.02 Newton’s Method
From the definition of the derivative, & = fim2Y, y =)
ax Ax—>0 AX
weaobtain Ay =~ %Ax or, equivaently,
Ay X P(%y 3,)
AX =~ .
f'(x) T
The tangent lineto the curve y =f (X) at the point Ay=-y,
P(Xn, Yn) hasslope=f" (xn) . l
Follow the tangent line down to its x axis intercept. T - }x
That intercept is the next approximation Xp+1 . X 7
e+
Ay=yn+1_yn=0_Yn=_f(xn)and .
AX = Xn1 — %, Ax
(%)
= Xa—*% = TN
' £(%)
If x, isthe n™ approximation to the equation f (x) = O, then a better approximation may
be
(%)
X1 = % T o)
' t'(x,)

which is Newton's method.
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Example 3.02.1
Find the solution of x =&, correct to 4 decimal places.
From a sketch of the two curves y = x LY
and y=e %, it is obvious that the only y=e 4 Yo
solution is somewhere in the interval \
(0,1). A reasonablefirst guessis
=1
=7
_v_pX ’ — —X — X
f(x)=x-¢€ = f'(x) 1X:e . i g
f _ — T
= X, _’(_Xn) =X, - %. 0 | X
f'(x, 1+e NES
Table of consecutive values.
_ _ f (%)
X, f(x,)=x-€| f'(x)=1+e™ ,
(%) (%) o)
0.500000 —0.106531 1.606531 —0.066311
0.566311 —0.001305 1.567616 —0.000832
0.567143 0.000000 1.567143 0.000000
0.567143

Correct to four decimal places, the solutionto x=¢e * is x = 0.5671 .
In fact, we have the root correct to six decimal places, x=0.567143.

A spreadsheet to demonstrate Newton's method for this example is available from the
course web site, at "www . engr .mun.ca/~ggeorge/9420/demos/".

This method converges much more rapidly than bisection, but requires more
computational effort.

Note that Newton’s method can fail if f' (x) =0 in the neighbourhood of the root. A
shallow tangent line could result in a sequence of approximations that fails to converge to
the correct value.
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3.03 Euler’sMethod for First Order ODEs

One of the smplest methods for obtaining the numerical values of solutions of initia
value problems of the form

y = f(xy),  y(%)=Y
is Euler’s method.

From the definition of the derivative, dy = Iimﬂ, weaobtain Ay ~ ﬂAx.
dx  a-0Ax dx

If we seek values of the solution y(x) at successive evenly spaced values of x, then we

have Ay = Vi = VY0 = Yo = Yo +AY = Y, + F(X,,¥,)AX.
With (by convention) h= Ax, we have the iterative scheme

Youu = Yo + W (X0 V0)

However, errors propagate rapidly unless the step size h isvery small, which requires a
proportionate increase in the number of computations. Severa modifications to Euler’s

method have been proposed, that replace the derivative y' = f(x,,y,) by a weighted
average of valuesof f at pointsaround (X, Y,)-

One of the most popular modifications is the fourth order Runge-Kutta method (RK4).
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3.04 Fourth Order Runge-Kutta Procedure (RK4)

Values (x,,Y,) [with x, = %, + nh] of the solution y(x) to theinitial value problem

y = f(xy), Y(%)=Y

are given by the iterative scheme

ko = (% Vn)
k, = f(%,+3h y,+3hk)
ky = f(x,+3h, y,+3hk,)

Example 3.04.1

Use the RK4 procedure with step size h = 0.1 to obtain an approximation to y(1.5) for
the solution of theinitial value problem y' = 2xy, y(1) =1.

X =1 h=021andwewant y(1.5). 1.5 = 1+ 5x0.1, sowe needtofind ys.
(X0, Yo) = (1, 1) and f(x,y) = 2xy.

For n=0:

k = f(X:Yo) = = 2x1x1 = 2

k, = 2(1+3(0.1 )( 1)2) = 231

ky = 2(1+3(0.2))(1+3(0.0) 231) = 2.34255
k, = 2(1+0.1)(1+(0. 1)234255) = 2.715361

Vi = Y + —(k1+2k2+2k3+k4) =1+ %’

Therefore y(1.1) = y, = 1.23367435

(2+2(2.31)+2(2.34255) + 2.715361)

We can proceed with asimilar chain of calculationsto find y,,y,,y, andfinaly y; .
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Example 3.04.1 (continued)
n X Yn ki ka ks Ky
0 1.000000 1.000000 2.000000 2.310000 2.342550 2.715361
1 1.100000 1.233674 2.714084 3.149571 3.199652 3.728735
2 1.200000 1.552695 3.726469 4.347547 4.425182 5.187555
3 1.300000 1.993687 5.183586 6.082738 6.204124 7.319478
4 1.400000 2.611633 7.312573 8.634059 8.825675 10.482602
5 1.500000 3.490211

Therefore y(1.5) ~ 3.4902.

Thisinitial value problem happens to have an exact solution, y = exz_ :
We can therefore test the accuracy of the RK4 procedure in this case.

1

The exact value of y(1.5) is 3.4903..., an absolute error of less than 0.0002 and arelative

error of lessthan 0.01%. Euler’s method, in contrast, has an error exceeding 16%!

END OF CHAPTER 3
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