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Let ( ,i i )α β  be the eigenvector associated with the eigenvalue iλ  of the coefficient 
matrix  

a b
A

c d
⎛ ⎞

= ⎜ ⎟
⎝ ⎠

 

Let c1, c2 be arbitrary constants. 
 
 
Case of real, distinct, negative eigenvalues (with 2 1 0λ λ< < ): 
 
Two linearly independent solutions are 

( ) ( )( ) ( ) ( ) ( )( ) ( )1 1 2 2
1 1 2, , and , ,
t t t

x t y t e e x t y t e e 2tλ λ λ
α β α β= =

λ

2

 

 
The general solution is 

( ) ( )( ) ( )1 1 2 2 1 1 2 2
1 2 1, ,
t t t t

x t y t c e c e c e c e
λ λ λ

α α β β= + +
λ

 

One can see that ( ) ( )( ) ( )lim , 0, 0
t

x t y t
→∞

= . 

All orbits therefore terminate at the critical point at the origin.    
The system is asymptotically stable. 
 
If both arbitrary constants are zero, then we have the trivial solution (x = y = 0 for all t). 
 
If one of the arbitrary constants is zero (say c1), then  

( ) ( )( ) ( ) ( ) ( )2
2 2 2 2

2

2 2, ,
t t

x t y t c e c e y t x t
λ λ β

α β
α

= ⇒ =  

which is a straight line through the 

origin, of slope 2

2

β
α

. 

[The situation is similar if c2 is zero.] 
 
We therefore obtain straight-line 
trajectories ending at the singular point, 
when exactly one of the arbitrary 
constants is zero. 
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If neither arbitrary constant is zero, then  

( )
( )

( )

( )

( )

( )
1 1 2 2 1 1 2 2 1 1 2 2

1 1 2 2 1 1 2 2 1 1 2 2

2 1 2 11 2

1 2 2 1 2 1

t tt t

t t t t

c e c e c c e c e cy t
x t c e c e c c e c e c

λ λ λ λλ λ

λ λ λ λ λ λ

β β β β β

α α

β

α α α

−

−

− −

− −

+ +
= = =

+ + + α

+
 

Because 2 1 0λ λ< < , 

( )
( )

( )

( )
1 1 2 2 2

2
1 1 2 2

2 1

2 1
lim lim

t t

t

t

c e cy t
x t c e c

λ λ

λ λ

β β β
αα α

−

−→−∞ →−∞

−

−

+
= =

+
 

and 

( )
( )

( )

( )
1 1 2 2 1

1
1 1 2 2

2 1

2 1
lim lim
t t

t

t

c c ey t
x t c c e

λ λ

λ λ

β β β
αα α

→∞ →∞

−

−

+
= =

+
 

All orbits therefore come in from infinity parallel to the line 2

2

y xβ
α

= . 

All orbits share the same tangent at the origin, 1

1

y xβ
α

= . 

We obtain a stable node that is also asymptotically stable. 

 
[The case illustrated here is 1 2 1 2 1 21, 3, 2, 1, 5, 10α α β β λ λ= = = = = − = −

3
2 4

+⎡ ⎤
⎢ ⎥− −⎣ ⎦

, which is 

generated from .] 
11

A
−

=

 
 
Case of real, distinct, positive eigenvalues (with 2 1 0λ λ> > ): 
The analysis leads to the same phase space, except that the arrows are reversed. 
The result is an unstable node. 
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Case of real, distinct eigenvalues of opposite sign (with 2 10λ λ< < ): 
 
The general solution is 

( ) ( )( ) ( )1 1 2 2 1 1 2 2
1 2 1, ,
t t t t

x t y t c e c e c e c e 2λ λ λ
α α β β= + +

λ
 

( ) ( )( ) ( ) ( )( )2 10 lim , and lim ,
t t

x t y t x t y tλ λ
→−∞ →∞

< < ⇒ do not exist (infinite), 

(with the exception of the orbit for c1 = 0). 
All orbits (except c1 = 0) therefore move away from the critical point at the origin.    
The system is unstable. 
 
If both arbitrary constants are zero, then we have the trivial solution (x = y = 0 for all t). 
 
If one of the arbitrary constants is zero (say c1), then  

( ) ( )( ) ( ) ( ) ( )2
2 2 2 2

2

2 2, ,
t t

x t y t c e c e y t x t
λ λ β

α β
α

= ⇒ =  

which is a straight line through the origin, of slope 2

2

β
α

. 

[The situation is similar if c2 is zero.] 
 
We therefore obtain straight-line 
trajectories when one of the arbitrary 
constants is zero.   One of them (c1 = 0) 
ends at the singular point while the other 
begins there. 
 
 
 
 
If neither arbitrary constant is zero, then  

( )
( )

( )

( )

( )

( )
1 1 2 2 1 1 2 2 1 1 2 2

1 1 2 2 1 1 2 2 1 1 2 2

2 1 2 11 2

1 2 2 1 2 1

t tt t

t t t t

c e c e c c e c e cy t
x t c e c e c c e c e c

λ λ λ λλ λ

λ λ λ λ λ λ

β β β β β

α α

β

α α α

−

−

− −

− −

+ +
= = =

+ + + α

+
 

Because 2 10λ λ< < , 

( )
( )

( )

( )
1 1 2 2 2

2
1 1 2 2

2 1

2 1
lim lim

t t

t

t

c e cy t
x t c e c

λ λ

λ λ

β β β
αα α

−

−→−∞ →−∞

−

−

+
= =

+
 

and 

( )
( )

( )

( )
1 1 2 2 1

1
1 1 2 2

2 1

2 1
lim lim
t t

t

t
c c ey t

x t c c e

λ λ

λ λ

β β β
αα α

→∞ →∞

−

−

+
= =

+
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All orbits therefore share the same asymptotes, 2

2

y xβ
α

=  (incoming) and 

 1

1

y xβ
α

=  (outgoing). 

 
We obtain a saddle point, which is an unstable critical point. 

 
[The case illustrated here is 1 2 1 2 1 21, 3, 2, 1, 5, 5α α β β λ λ= = = = = + = − , which is 

generated from 
7 6
4 7

A
− 

=  − 
.] 
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Case of real, equal, negative eigenvalues ( 1 2 0λ λ= < ) and  b = c = 0: 
 
The system is uncoupled: 

  

dx ax
dt
dy d y
dt

=

=
 

and equal eigenvalues now require a = d = λ . 
The general solution is ( ) ( )( ) ( )1 2, ,t tx t y t c e c eλ λ= . 

( ) ( )( ) ( ) ( ) ( )( ) ( )0 lim , , and lim , 0
t t

x t y t x t y tλ
→−∞ →∞

< ⇒ = ∞ ∞ = ,0 . 

All orbits therefore terminate at the critical point at the origin.    
The system is asymptotically stable. 
 
If both arbitrary constants are zero, then we have the trivial solution (x = y = 0 for all t). 

( )
( )

2
1

1

0
y t cc t
x t c

≠ ⇒ = ∀  

and    ( )1 20, 0 0c c x t= ≠ ⇒ = t∀
The orbits are straight lines  
ending at the critical point at the origin. 
 
The critical point is an asymptotically 
stable star-shaped node. 
 
 
 
 
 
 
Additional Note: 
 
The eigenvalues of any triangular matrix are the diagonal entries of that matrix: 

The characteristic equation of 
0
a b

A
d

⎡ ⎤
= ⎢ ⎥
⎣ ⎦

 is ( )det 0A Iλ− =  

( )( ) 0 o
0

a b
a d a

d
λ

λ λ λ
λ

−
⇒ = − − = ⇒ =

−
r d  
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Case of real, equal, negative eigenvalues ( 1 2 0λ λ= < ) and  b, c not both zero: 
 
The characteristic equation ( ) ( )2 0a d ad bcλ λ− + + − =   

has the discriminant .    ( ) ( ) ( )2 24 4a d ad bc a d bc+ − − = − + = 0

The solution of the characteristic equation simplifies to 
2

a dλ +
= . 

The general solution is ( ) ( )( ) ( ) ( )( )1 1 2 2 1 1 2 2, ,t tx t y t c c t e c c t eλ λα α β β= + + . 

( ) ( )( ) ( ) ( ) ( )( ) ( )0 lim , , and lim , 0
t t

x t y t x t y tλ
→−∞ →∞

< ⇒ = ∞ ∞ = ,0 . 

All orbits therefore terminate at the critical point at the origin.    
The system is asymptotically stable. 
 
If both arbitrary constants are zero, then we have the trivial solution (x = y = 0 for all t). 

( )
( )

1 1 2 2 2
2

1 1 2 2 2

If 0, then as
y t c c tc t
x t c c t

β β β
α α α

+
≠ = →

+
→ ±∞  

All orbits (except for c2 = 0) therefore come in from infinity parallel to the line 
2

2

y xβ
α

= , which is also a tangent at the origin.    It can be shown that 

1 2
2

1 2

when 0cβ β
α α

= = , so that the trajectories for c1 = 0 and c2 = 0 are both 2

2

y xβ
α

= . 

 
 
 
Neither eigenvalue can be zero, otherwise (0, 0) is not the only critical point (as shown on 
page 4.14). 
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Case of real, equal, positive eigenvalues ( 1 2 0λ λ= > ) 
The analysis leads to the same phase planes as in the case of real equal negative 
eigenvalues, but the signs of the arrows are reversed and the result is an unstable node. 
 
 
Case of complex conjugate pair of eigenvalues with negative real part  
 
The eigenvalues (roots of the characteristic equation) are 
  ( )1 2, ,a jb a jb aλ λ= + = − < 0 . 
The general solution has the form 

( ) ( ) ( )
( ) ( ) (

1 1 2 2 1 2

1 1 2 2 1 2

cos sin sin cos

cos sin sin cos

at

at)
x t c A bt A bt c A bt A bt e

y t c B bt B bt c B bt B bt e

⎡ ⎤= − + +⎣ ⎦
⎡ ⎤= − + +⎣ ⎦

 

Using the definitions  

( ) ( )2 2
2 1 1 2 1 1 2 2A c A c A c A c A= − + + , ( ) ( )2 2

2 1 1 2 1 1 2 2B c B c B c B c B= − + +  

1 1 2 2 2 1 1 2cos , sinc A c A c A c A
A A

α α+ −
= = , 1 1 2 2 2 1 1 2cos , sinc B c B c B c B

B B
β β+ −

= =  

the general solution can be written more compactly as  
( ) ( )( ) ( ) ( )( ), cos , cosat atx t y t A e bt B e btα β= + +  

( ) ( )( ) ( ) ( ) ( )( ) ( )0 lim , , and lim , 0,0
t t

a x t y t x t y t
→−∞ →∞

< ⇒ = ∞ ∞ = . 

( ) ( )If 0 then
2

x t bt n nπα π= + = + ]∈  

( ) ( )If 0 then
2

y t bt n nπβ π= + = + ]∈  

( )
( )

( )
( )

cos
cos

y t B bt
x t A bt

β
α

+
=

+
 

( )
( )

y t
x t

 is periodic, with period 2
b
π .    

The orbits spiral in to the origin. 
 
We have an asymptotically stable 
spiral, also known as a stable focus. 
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Case of complex conjugate pair of eigenvalues with positive real part  
 
The analysis leads to the same phase planes as in the case of negative real part, but the 
signs of the arrows are reversed and the result is an unstable focus. 
 
 
 
Case of complex conjugate pair of eigenvalues with zero real part (pure imaginary) 
 
The eigenvalues (roots of the characteristic equation) are 
  1 2,jb jbλ λ= − = + . 
The general solution has the compact form 

( ) ( )( ) ( ) ( )( ), cos , cosx t y t A bt B btα β= + +  

If  0 and
2
πα β= = − , then  

( ) ( )( ) ( ), cos , sinx t y t A bt B bt=     
2 2

2 2 1x y
A B

⇒ + =  

so that the orbits are ellipses, centred on the critical point at the origin. 
This is a stable centre. 

 
 
Other choices of α and β  also lead to concentric sets of ellipses, but rotated with respect 
to the coordinates axes.  
 
Note that this is the only case of a stable critical point that is not asymptotically stable. 
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Summary for the Linear System  
 

  ( ), , , , , constantsdx dyax b y cx d y a b c d
dt dt

= + = + =  

Characteristic equation: 
( ) ( )2 0a d ad bcλ λ− + + − =  

Discriminant 
( ) ( ) ( )2 24 4D a d ad bc a d b= + − − = − + c  

Roots of characteristic equation (= eigenvalues of ): 
a b

A
c d
⎛ ⎞

= ⎜ ⎟
⎝ ⎠

( )
2

a d D
λ

+ ±
=  

Cases: 
 

a + d D other condition λ Type of point 

a + d  <  0 D > 0 ad – bc  >  0 real, distinct 
negative 

Stable 
node 

a + d  <  0 D = 0 b  =  c  =  0 real, equal 
negative 

Stable 
star shape 

a + d  <  0 D = 0 b, c not both 0 real, equal 
negative 

Stable 
node 

a + d  <  0 D < 0  complex 
conjugate pair 

Stable 
focus [spiral] 

a + d  =  0 D < 0  Pure 
imaginary pair 

Stable 
centre 

a + d  >  0 D > 0 ad – bc  >  0 real, distinct 
positive 

Unstable 
node 

(any) D > 0 ad – bc  <  0 real, distinct 
opposite signs 

Unstable 
saddle point 

a + d  >  0 D = 0 b  =  c  =  0 real, equal 
positive 

Unstable 
star shape 

a + d  >  0 D = 0 b, c not both 0 real, equal 
positive 

Unstable 
node 

a + d  >  0 D < 0  complex 
conjugate pair 

Unstable 
focus [spiral] 

 
Note that  ad – bc = det A  and  that  a + d  =  the trace of the matrix A. 
 
In brief, if the real parts of both eigenvalues are negative (or both zero), then the origin is 
stable.   Otherwise it is unstable. 
 
[See also the example at "www.engr.mun.ca/~ggeorge/9420/demos/phases.html".] 
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Example 4.05.1    
 
Find the nature of the critical point of the system 

4 3 , 5 4dx dyx y x
dt dt

= − = − y  

and find the general solution. 
 
 

The coefficient matrix is 
4 3
5 4

a b
A

c d
−⎛ ⎞ ⎛

= =⎜ ⎟ ⎜
⎞
⎟−⎝ ⎠ ⎝ ⎠

. 

trace(A)  =  a + d  =  4 + (–4)  =  0 
D  =  (a – d)2  +  4bc  =  (4 + 4)2  +  4(–3)(5)  =  64  –  60  =  +4  >  0 

4 3
det 16 15 0

5 4
A

−
= = − +

−
<  

D  >  0   and   ad  –  bc  <  0    ⇒   λ  are real with opposite signs and 
the critical point is a saddle point (unstable). 
 
Solving the system: 

( ) 0 4 1
2 2

a d D
λ

+ ± ±
= = = ±  

( ) ( )( ) ( )1 1 2 2 1 1 2 2, ,t t t tx t y t c e c e c e c eα α β β− −= + +  

where 1

1

α
β
⎛ ⎞
⎜ ⎟
⎝ ⎠

 is the eigenvector associated with the eigenvalue  λ = –1 

and 2

2

α
β
⎛ ⎞
⎜
⎝ ⎠

⎟

⎛ ⎞
⎜ ⎟
⎝ ⎠

 is the eigenvector associated with the eigenvalue  λ = +1. 

To find the eigenvectors, find non-zero solutions to the equation  
0
0

a b
c d
λ α

λ β
−⎛ ⎞⎛ ⎞

=⎜ ⎟⎜ ⎟−⎝ ⎠⎝ ⎠
 

At λ = –1: 
4 1 3 5 3 0

5 4 1 5 3 0
α α
β β

+ − −⎛ ⎞⎛ ⎞ ⎛ ⎞⎛ ⎞ ⎛ ⎞
= =⎜ ⎟⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟− + −⎝ ⎠⎝ ⎠ ⎝ ⎠⎝ ⎠ ⎝ ⎠

 

Any non-zero choice such that  5α  –  3β  =  0  will provide an eigenvector. 

Select . 1

1

3
5

α
β
⎛ ⎞ ⎛ ⎞

=⎜ ⎟ ⎜ ⎟
⎝ ⎠⎝ ⎠
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Example 4.05.1   (continued) 
 
At λ = +1: 

4 1 3 3 3 0
5 4 1 5 5 0

α α
β β

− − −⎛ ⎞⎛ ⎞ ⎛ ⎞⎛ ⎞ ⎛ ⎞
= =⎜ ⎟⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟− − −⎝ ⎠⎝ ⎠ ⎝ ⎠⎝ ⎠ ⎝ ⎠

 

Any non-zero choice such that  α  –  β  =  0  will provide an eigenvector. 

Select . 2

2

1
1

α
β
⎛ ⎞ ⎛ ⎞

=⎜ ⎟ ⎜ ⎟
⎝ ⎠⎝ ⎠

The general solution is  

( ) ( )( ) ( )1 2 1 2, 3 , 5t t t tx t y t c e c e c e c e− −= + +  
 
[It is simple to check that (4x – 3y, 5x – 4y) is indeed equal to ( ),x y� � ]. 
 
 
Also note that  
( )
( )

( )
( ) ( ) ( )

( ) ( )1 2
1 2

1 2

5 5lim 0 and lim 1 0
33 t t

t t

t t
y t y t y tc e c e c c
x t x t x tc e c e →−∞ →+∞

−

−
+

= ⇒ = ≠ =
+

≠  

so that all orbits for which both c1 and c2 are non-zero share the same asymptotes, 
3y = 5x (which is the incoming orbit, when c2 = 0) and   
y = x (which is the outgoing orbit, when c1 = 0).  
 
A few representative orbits and the two asymptotes are plotted in this phase space 
diagram: 
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Example 4.05.2   
 
Find the nature of the critical point of the system 

2 , 2dx dyx y x
dt dt

y= − + = −  

and find the general solution. 
 
 

The coefficient matrix is 
2 1
1 2

a b
A

c d
−⎛ ⎞ ⎛

= =⎜ ⎟ ⎜
⎞
⎟−⎝ ⎠ ⎝ ⎠

. 

trace(A)  =  a + d  =  –2 + –2  =  –4  <  0. 
D  =  (a – d)2  +  4bc  =  (–2 + 2)2  +  4(1)(1)  =  0  +  4  =  4  >  0 
   ⇒   λ  are real, distinct and negative and 
det A  =  ad – bc  =  4  –  1  =  3  > 0    ⇒   the critical point is a stable node. 
 
Solving the system: 

( ) 4 4 2 1 3,
2 2

a d D
λ

+ ± − ±
= = = − ± = 1− −  

( ) ( )( ) ( )1 1 2 2 1 1 2 2
3 3, ,t t t tx t y t c e c e c e c eα α β β− − −= + + −  

where 1

1

α
β
⎛ ⎞
⎜ ⎟
⎝ ⎠

 is the eigenvector associated with the eigenvalue  λ = –3 

and 2

2

α
β
⎛ ⎞
⎜
⎝ ⎠

⎟

⎛ ⎞
⎜ ⎟
⎝ ⎠

0
⎛ ⎞
⎜ ⎟
⎝ ⎠

0

 is the eigenvector associated with the eigenvalue  λ = –1. 

To find the eigenvectors, find non-zero solutions to the equation  
0
0

a b
c d
λ α

λ β
−⎛ ⎞⎛ ⎞

=⎜ ⎟⎜ ⎟−⎝ ⎠⎝ ⎠
 

At λ = –3: 
2 3 1 1 1 0
1 2 3 1 1

α α
β β

− +⎛ ⎞⎛ ⎞ ⎛ ⎞⎛ ⎞
= =⎜ ⎟⎜ ⎟ ⎜ ⎟⎜ ⎟− +⎝ ⎠⎝ ⎠ ⎝ ⎠⎝ ⎠

 

Any non-zero choice such that  α  +  β  =  0  will provide an eigenvector. 

Select . 1

1

1
1

α
β
⎛ ⎞ ⎛ ⎞

=⎜ ⎟ ⎜ ⎟−⎝ ⎠⎝ ⎠
At λ = –1: 

2 1 1 1 1 0
1 2 1 1 1

α α
β β

− + −⎛ ⎞⎛ ⎞ ⎛ ⎞⎛ ⎞ ⎛ ⎞
= =⎜ ⎟⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟− + −⎝ ⎠⎝ ⎠ ⎝ ⎠⎝ ⎠ ⎝ ⎠

 

Any non-zero choice such that  –α  +  β  =  0  will provide an eigenvector. 

Select . 2

2

1
1

α
β
⎛ ⎞ ⎛ ⎞

=⎜ ⎟ ⎜ ⎟
⎝ ⎠⎝ ⎠
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Example 4.05.2   (continued) 
 
The general solution is  

( ) ( )( ) ( )1 2 1 2
3 3, ,t t t tx t y t c e c e c e c e− − − −= + − +  

 
[It is simple to check that (–2x + y,  x – 2y) is indeed equal to ( ),x y� � ]. 
 
 
Also note that  
( )
( )

( )
( ) ( ) ( )

( ) ( )

1 2 1 2 1 2

1 2 1 2 1 2

1 2

3 2 2

3 2 2

lim 1 0 and lim 1 0
t t

t t t t

t t t t
y t c e c e c e c c c e
x t c e c e c e c c c e

y t y t
c c

x t x t→−∞ →+∞

− − −

− − −
− + − + − +

= = =
+ + +

⇒ = − ≠ = ≠

 

and  ( ) ( )( ) ( ) ( )1 2 1 2
3 3lim , lim , 0,0

t t
t t t tx t y t c e c e c e c e

→∞ →∞

− − − −= + − + =

so that all orbits for which both c1 and c2 are non-zero come in from a direction parallel to  
y = –x (which is the orbit when c2 = 0) and share the same tangent at the origin,   y = x 
(which is the orbit when c1 = 0).  
 
 
A few representative orbits and the common tangent are plotted in this phase space 
diagram: 
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