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4.11 Duffing’s Equation

Among the simplest models of damped non-linear forced oscillations of a mechanical or
electrical system with a cubic stiffness term is Duffing’s equation:

2
df+aﬁ+bx+cx3 = d cos wt 6))
dt dt
In section 4.01, we considered the simple undamped pendulum:
d’x g .
+ =sinx =0 2
a’ L @

When x is very small, sinx~x and (2) reduces to the ODE for simple harmonic motion.
3

. . . . X
The next order approximation is sinx ~ x — o so that (2) becomes

2 3
d_f+§x_§x_=() A3)
dt L L 6

If we add a damping term a% and a forcing function d cos @t , then (3) becomes

Duffing’s equation (1).
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Special Case 1:
Conduct a stability analysis for the undamped unforced Duffing’s equation

CXy@x +ex’ =0 “)
The equivalent first order system is

C))

2
- X — cx3

Critical points:
@

2
(y=0) and (x:O or xzz——]
c

Near (0, 0) the linear approximation is

()L o)

The characteristic equationis det(4-Al) = 0 = 1>+ @’ =0
The eigenvalues are a pure imaginary pair

= (0,0)is a centre. It is stable but not asymptotically stable.

If ¢ >0, then this is the only critical point of (4).

2
If ¢ <0, then there are two other critical points, at [J_r —, OJ .
—c
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Special Case 1: (continued)
2
Near [J_q /a)—, 0]
—c

dx
= (»)
near(ira)/\/;,O)

dt

= (0)[)61\/(_0:;] + (l)y =y
dy
dt

L or
near(ia)/\/:,O) ax

y

{ _ wzj oP
XF— |+ =—
(ror0) —c) 9y

~

(iw/«/:,O)
= (—0)2)6 — CX3)
near(ia)/x/:,O)

OX |1y e —c oy
()] o

near (iw/\/jc,O)

Y
* (tor2.0)
2

(zor)
a)2
XFo\|—
—C
a)2
The linear approximation to (5) near | £,/—, 0 | is
—c
2
X 0 1) x5,[<
i) 207 0 ¢ @
y
The characteristic equationis det(4 - Al) = 0 = A% — 20” = 0
The eigenvalues are a distinct real pair with opposite sign

2
= [i a)_’ 0} are saddle points. They are unstable.
—c
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Exact Solution of Special Case 1:

The system (5),

ds _
a7
d—y:—a)zx—cx3
dt
2 3
o Ay _dy dx  —ox - cx
dx dt dt y
2 A 0’ x* cx’
= dy = (-o’x — ¢x’)dx :>y—=————
i ( ) 2 2 2 4

Therefore the orbits in the phase space (x, y) are y* = 4 — &’x’ — ,

where A is an arbitrary constant.

If ¢ >0, then all orbits are closed, about the centre at (0, 0).
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Special Case 1: (continued)

If ¢ <0, then those orbits far enough away from the centre are open, due to the influence
2
of the saddle points at [i a)_’ 0}.

The part of the phase space between the two saddle points resembles that for the
undamped pendulum on page 4.07:

ar

The orbits passing through the saddle points separates closed orbits from open orbits and
is called the separatrix.

The positive y axis intercept of each orbit is just the value of JA4 for that orbit.
The separatrix has x axis intercepts at the saddle points. Therefore, for the separatrix,

4 2 4 4
A =]ox+5= e o I [
2 M —C 2\ ¢ -2c

The equation of the separatrix is
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Special Case 2:

Conduct a stability analysis for the damped unforced Duffing’s equation

2
d—f+aﬁ+a)2x+cx3=0 8)
dt dt

The equivalent first order system is
dx

dt
&
di

=Y
®

—0’x — cxX’ —ay

The critical points are the same as in special case 1:
2

(»=0) and [sz or x° :—CO—J
c

Near (0, 0) the linear approximation is

X 0 1 \[x
| = 2 (10)
Y W —a)\y
The characteristic equationis det(d-A) = 0 = A* + al +0” =0
—a + \Na’ -4’
2

The critical point is stable if @ >0 and unstable if a <O0.
It is a focus if @* —4®? <0 and a node otherwise.

= A=

If ¢ >0, then this is the only critical point of (8).

2
If ¢ <0, then there are two other critical points, at [J_r —, OJ .
—c
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Special Case 2: (continued)

P
near (iw/\/jc,O) ax

Y
(iw/«/—_c,O)

(ﬁ © j L oP
(0/=<.0) V-¢ 0y

. 99

~

2 3
T =|l—-w X—-—Ccx — ay
near (J_ra;/\/:,0> ( ) near(iw/J—_c,O) Ox

Y
(ia)/«/:,O)

(x; © j g
(to=2.0) J-c oy

_ (_wz_y(f’_m[m f_)_c) b (ca)y = 2a)2(x$ f_’_cj ~ ay

2
The linear approximation to (9) near {i a)_’ 0] is
—c

@
: 01 _
MR = an

The characteristic equation is det(4-A) = 0 = A% + al — 20> =0

—a + a’ +8a’
2
The eigenvalues are a distinct real pair with opposite sign

o0

= A=

2
= (i— a)_’ 0] are saddle points. They are unstable.
—C

The presence of the damping term changes the centre into a stable focus (for physically
reasonable values of a, @ and ¢, or, for particularly strong damping, a stable node). The
form of the separatrix is more complicated, as trajectories leaving either saddle point in
the direction of the origin are swept by the damping term into the focus (or node) instead
of moving around the centre to the other saddle point. There are no closed orbits; just
orbits that terminate at the origin or a saddle point and orbits that retreat to infinity.
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Special Case 2: (continued)

An enhanced sample phase portrait plot from Maple is shown here:

Example 4.11.1 Mon-Linear Solution w=-c=a=1
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and, zooming in,
Example 4.11.1 Mon-Linear Solution w=-c=a=1
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4.12 More Examples

Example 4.12.1

Examine the stability of the linear second order differential equation
2
d—f + 2@ + (47z2+1)x =0
dt dt

and find the complete solution for the initial conditions
x(O) =0, y(O) = x(O) =2r.

The system can be rewritten as the first order system
X 0 1 x
(y'j (47 +1) 2 (yj

The only critical point is at the origin.

D = (a=d)’ + 4bc = (0+2)" + 4(1)(~(47" +1)) = —167°
D<0 and (a+d)<0 = the critical point is an asymptotically stable focus.

a+d)ir\/5 3 —2++-167°

2 2

L

= —1+2xj

Using the formula on page 4.30, u=-1,v=27r, u—-d=-1+2=1, c=—(47r2 +1).
The general solution is
x(1) = ¢ (cy(cos2zt =2z sin 27t) + ¢, (27 cos 2zt +sin 27t ))

y(t) = —e_t(47r2+1)(c3 cos 27zt + ¢, sin27t)

[and one can check that % = y is indeed true.]

(x(O),y(O)) B (0’ 27[) = (Cs+27704> —03) = (0 2—7Z]

477 +1
=27 1
= (e a) = | o T
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Example 4.12.1 (continued)

The complete solution is
~t

(x()y(1) = =

X
7 +1

—

27 (27 sin 27t —cos 27t ) + (27 cos 2zt + sin 27t), (47z2 +1)(27z00527zt - sin27rt))

=

(x(t),y(t)) = e_t(sin27rt, (27 cos2rmt — sin27rt))

As t — oo, both functions x(f) and y(¢) tend to zero.

The resulting phase space diagram is

F.

s

[
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Example 4.12.2

Examine the stability of the linear second order differential equation
2
d—f P (47z2 +1)x = (37[2 +1)coszrt — 2zxsinzt
dt dt

The complete solution for the initial conditions
x(0) =1, y(0) = x(0) = 27.
can be obtained by building upon the solution to Example 4.12.1 and is

(x(t),y(t)) = (cosm + e lsin2xt, —zwsinat + e_t(27z00527zt - sin27zt))

In this case, the steady state solution (after the transient terms have vanished) is
lim (x(¢),y(¢)) = (coszt, —msint)

t—> o

so that the orbit in the phase space approaches the ellipse

This ellipse must therefore be the limit cycle for
the system.

A plot of the orbit in the phase space is shown
here.

Note how the solution curve in the phase space
can wander inside and outside the limit cycle
more than once, before finally settling down to its
asymptotic approach as the transient terms
become negligible.
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Example 4.12.2 (continued)

Different sets of initial conditions can generate orbits that look very different at first,
before they settle down into their steady-state configuration near the limit cycle.

o
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413 Liénard’s Theorem

If f(x) is an even function for all x
and  g(x) is an odd function for all x
and g(x)>0forallx>0

X
and F (x) = J. f (t)dt is such that F (x) =0 has exactly one positive root, y, and
0

F(x)<0 for 0<x<y and F(x)>0 and non-decreasing for x> y,
then

the system
i=y, y=-f(x)y-glx)
or, equivalently,
d’x dx
e + f(x)z + g(x) =0

has a unique limit cycle enclosing the origin and that limit cycle is asymptotically stable.
When all of the conditions of Liénard’s theorem are satisfied, the system has exactly one

periodic solution, towards which all other trajectories spiral as t — oo.

Example 4.13.1

Let f(x) = —u (1 —x%) and g(x)=x, (with x> 0),

then Liénard’s ODE becomes
d’x dx
— - u(l-¥*)=+x=0
dar’ ( ) dt

which is Van der Pol’s equation (section 4.08).

Checking the conditions of Liénard’s theorem:
f(x) = —u (1 —x% is an even function.
g(x) = x is an odd function, positive for all x > 0.

0[] o)

F (x) =0 has only one positive root, y = V3.
F((x)<0for 0 < x < V3 and F (x) > 0 and increasing for x > V3.

Therefore Van der Pol’s equation possesses a unique and asymptotically stable limit
cycle.
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5. The Gradient Operator

A brief review is provided here for the gradient operator V in both Cartesian and
orthogonal non-Cartesian coordinate systems.

Sections in this Chapter:

5.01 Gradient, Divergence, Curl and Laplacian (Cartesian)

5.02 Differentiation in Orthogonal Curvilinear Coordinate Systems
5.03 Summary Table for the Gradient Operator

5.04 Derivatives of Basis Vectors

5.01 Gradient, Divergence, Curl and Laplacian (Cartesian)

Let z be a function of two independent variables (x, y), so that z =f (X, y).
The function z = f (x, y) defines a surface in R.
At any point (x, y) in the x-y plane, the direction in which one must travel in order to
experience the greatest possible rate of increase in z at that point is the direction of the
gradient vector,

(AR AR

00X oy

The magnitude of the gradient vector is that greatest possible rate of increase in z at that
point. The gradient vector is not constant everywhere, unless the surface is a plane.

(The symbol V is usually pronounced “del”).

The concept of the gradient vector can be extended to functions of any number of
of of of of

;
variables. If u=f(x,y,zt),then Vf = | — — — — | .
ox 0y 0z ot

If v is a function of position r and time t, while position is in turn a

function of time, then by the chain rule of differentiation, // \\
X ¥ z i

dv ovdx ovdy ovdz ov (dr _j_ ov

— = —— +t —— 4+ —— + — = Viv+ —

dt oxdt oy dt oz dt ot dt ot y ; ;
av _ (VeV)v + v
dt t

which is of use in the study of fluid dynamics.
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The gradient operator can also be applied to vectors via the scalar (dot) and vector (cross)
products:

The divergence of a vector field F(x, vy, z) is

A region free of sources and sinks will have zero divergence:
the total flux into any region is balanced by the total flux out from that region.

The curl of a vector field F(x,y, z) is

.0 | [or _oR]

ox oy 0z

curlF = VxF = | j 2 F| = ok _ 9%
oy 0z OX

Kk 2 F oF _ ok

oz | | ox oy |

In an irrotational field, curl F=0.
Whenever F = V¢ for some twice differentiable potential function ¢, curl F=0
or

curl (grad ¢) = VxV¢ = 0
Proof:
;
_ o 06 Op
F=Vg=[FRFRF] =2 Z£ =L
#=[RF Rl {axayaz}
S ¢ | [ .
i 9 99 p 09 0
OX 0X oyoz 010y
2 2
:curl?gb:]—%: o9 _99 |_| o
oy oy 0z0x 0X0z
Kk O 99| | % _ O 0
0z o0z| |oxoy oyox | | ]
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Among many identities involving the gradient operator is

div(curl If) = V.VxF =0

for all twice-differentiable vector functions F

Proof:

o [6F oF, j 0 (GF oF, J 0 (aF 8F1]
diveurl F = + + —1
ox\ oy 0z oy\ 0z oX 0z\ ox oy
_WR, Wy oW WRXH
‘ﬁ%ﬁv oxdx | pyex  pfox | ordx  pRoy

The divergence of the gradient of a scalar function is the Laplacian:

o’f  o*f o°f
+ +
ox>  oy* 01°

div(grad f) = VeVf = V*f =

for all twice-differentiable scalar functions f.

In orthogonal non-Cartesian coordinate systems, the expressions for the gradient operator
are not as simple.
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5.02 Differentiation in Orthogonal Curvilinear Coordinate Systems

For any orthogonal curvilinear coordinate system (us, Uy, Us) in R®,

' 1r L = 1 of
the unit tangent vectors along the curvilinear axesare &, = T, = Hs_,
i OU;
or
where the scale factors | h = o
i

The displacement vector T can then be writtenas 7 = ué, +u,é, +u.8,,
where the unit vectors &; form an orthonormal basis for R,

. 0 (1#]
1 (i=])
The differential displacement vector dr is (by the Chain Rule)
ar = Lau + Loy, + Pdu, = hdus, + hdué, + hdué,
ou, ’ ou,

and the differential arc length ds is given by
ds? = dredr = (hdy,)’ +(h,du,)” +(h,du,)’

The element of volume dV is

o(x,Vv,z
dv = hhh, dudu,dy, = ﬁ du,du,du,

1'~21¥3

Jacobian

ox oy oz

ou; oup  oug

= aX ay az duldUZdU3

8u2 aUZ 8U2

ox oy oz

6U3 8U3 8U3

Example 5.02.1: Find the scale factor hy for the spherical polar coordinate system
(x,y,z) = (rsin@cosg, rsin@sing, rcosé):

N T
or {%@ Q} = [rcos@cosg rcos@sing —rsinﬂ]T

00 | 60 06 00
= h, = S—; = \/rz cos’ @ cos’ ¢ + r?cos’@sin®¢ + r’sin’o

_ \/rz cos’ 6 (cos’ iN“g) + r’sin’6 = \/rz (cos’6 +sin’ @) = r
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5.03 Summary Table for the Gradient Operator

Gradient operator v_809 & 0 & 9
h éu, h,ou, h au
Gradient VvV = eV &NV + é_sﬂ
hou  h,ou, hou
Divergence VeF = 1 o(h, h3F1)+8(h3 h1F2)+8(h1 h,F,)
hhh, oy, au, a,
A 0
e, — F
he o hR
Curl VxF = 1 h, &, 9 h, F,
h h, h, ou,
A 0
h3e3 a h3 F3
3
Laplacian V2V = 1 | 9(hhov L9 h b V. L9 hh, oV
hh,h {oul h ou) ou,{ h, ou,) ou,{ hy ou,

Scale factors:

Cartesian: hy =hy =h, = 1.
Cylindrical polar: h,=h,=1, hy = p.
Spherical polar: hr =1, hg=r, hy=rsing.

Example 5.03.1: The Laplacian of V in spherical polars is

VAV = 21_ Q( 2sin¢9%j+i(sin9gj+i AL
resiné | or or 00 00 ) 0¢\sin@ oO¢
2 2 2
or V& = g 2N, iz g+cot9% + %g
or ror re\ o6 06 resin“ 6 o¢
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Example 5.03.2

A potential function V (F) is spherically symmetric, (that is, its value depends only on

the distance r from the origin), due solely to a point source at the origin. There are no
other sources or sinks anywhere in R®. Deduce the functional form of V ().

V (F) is spherically symmetric = V(r,8,¢) = f(r)
In any regions not containing any sources of the vector field, the divergence of the vector
field F = VV (and therefore the Laplacian of the associated potential function V) must

be zero. Therefore, forallr#0, divF = VeVV = VA =0
But

VA& = 21_ 2( 2sinéiﬂj+i(sin0&j+i —_1 N
resiné@\ or or 00 00 ) 0¢\sing o¢

= V& = 1 (i(rzmd—vj+0+oj=o
dr dar

r? sind
— i(rzd_vj: = rzd—V:B - d—V:BF_Z
dr dr dr dr
-1
= V = + A, where A, B are arbitrary constants of integration.

Therefore the potential function must be of the form

v(r,e,¢):A_$

This is the standard form of the potential function associated with a force that obeys the

. 1
inverse square law F oc = .
r
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5.04 Derivatives of Basis VVectors

Cartesian: 2 =Ej 950
dt dt dt

Cylindrical Polar Coordinates:

X=pCcos¢, y=psSing, z=12
d . d¢,
mp_m¢
d . dg,
m¢_ at ©
d%-0
dt

Spherical Polar Coordinates.

The “declination” angle 6 is the angle
between the positive z axis and the
radius vector r. 0<f<m.

The “azimuth” angle ¢ is the angle on

the x-y plane, measured anticlockwise

from the positive x axis, of the shadow

of the radius vector. 0< ¢<2x.
Z=rcosf.

The shadow of the radius vector on the
x-y plane has length r sin 6.

It then follows that

X = rsin @ cos ¢

gf = %é + %sineﬁ
dt dt dt
dg__99% %0030;13
dt dt dt

d

é = —%(sin@f+coseé)

-
I

<
Il

r =

= Vv

°
>

Xi+yj+zK

)'(f+yj+z'I2

+ zk

= pp+phd+1k

[radial and transverse components of V]

and y =rsindsin¢.

Fooin &

r=rf

PP +rd0+rgsinbg
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Example 5.04.1

Find the velocity and acceleration in cylindrical polar coordinates for a particle travelling

along the helix x=3cos2t, y=3sin2t,z=t.

Cylindrical polar coordinates: x=pcos¢, y=psing, z=z2

= p?=x%+y?, tan¢:z
X

p? =9c0s°2t+9sin’2t =9 = p=3 = p=0

_3sin2t

= —tan2t = ¢g=2t = =2
3cos 2t ¢ ¢

tan ¢

= F=3p+zk

= §= %:p,b+p¢'5¢3+z'f< = 0p+3x24+1k = 64+K

[The velocity has no radial component — the helix remains the same distance from the

z axis at all times.]

Other examples are in the problem sets.

END OF CHAPTER 5
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