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5. The Gradient Operator

A brief review is provided here for the gradient operator V in both Cartesian and
orthogonal non-Cartesian coordinate systems.

Sections in this Chapter:

5.01 Gradient, Divergence, Curl and Laplacian (Cartesian)

5.02 Differentiation in Orthogonal Curvilinear Coordinate Systems
5.03 Summary Table for the Gradient Operator

5.04 Derivatives of Basis Vectors

5.01 Gradient, Divergence, Curl and Laplacian (Cartesian)

Let z be a function of two independent variables (x, y), so that z =f (X, y).
The function z = f (x, y) defines a surface in R.
At any point (x, y) in the x-y plane, the direction in which one must travel in order to
experience the greatest possible rate of increase in z at that point is the direction of the
gradient vector,

(AR AR

00X oy

The magnitude of the gradient vector is that greatest possible rate of increase in z at that
point. The gradient vector is not constant everywhere, unless the surface is a plane.

(The symbol V is usually pronounced “del”).

The concept of the gradient vector can be extended to functions of any number of
of of of of

;
variables. If u=f(x,y,zt),then Vf = | — — — — | .
ox 0y 0z ot

If v is a function of position r and time t, while position is in turn a

function of time, then by the chain rule of differentiation, // \\
X ¥ z i

dv ovdx ovdy ovdz ov (dr _j_ ov

— = —— +t —— 4+ —— + — = Viv+ —

dt oxdt oy dt oz dt ot dt ot y ; ;
av _ (VeV)v + v
dt t

which is of use in the study of fluid dynamics.
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The gradient operator can also be applied to vectors via the scalar (dot) and vector (cross)
products:

The divergence of a vector field F(x, vy, z) is

A region free of sources and sinks will have zero divergence:
the total flux into any region is balanced by the total flux out from that region.

The curl of a vector field F(x,y, z) is

.0 | [or _oR]

ox oy 0z

curlF = VxF = | j 2 F| = ok _ 9%
oy 0z OX

Kk 2 F oF _ ok

oz | | ox oy |

In an irrotational field, curl F=0.
Whenever F = V¢ for some twice differentiable potential function ¢, curl F=0
or

curl (grad ¢) = VxV¢ = 0
Proof:
;
_ o 06 Op
F=Vg=[FRFRF] =2 Z£ =L
#=[RF Rl {axayaz}
S ¢ | [ .
i 9 99 p 09 0
OX 0X oyoz 010y
2 2
:curl?gb:]—%: o9 _99 |_| o
oy oy 0z0x 0X0z
Kk O 99| | % _ O 0
0z o0z| |oxoy oyox | | ]
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Among many identities involving the gradient operator is

div(curl If) = V.VxF =0

for all twice-differentiable vector functions F

Proof:

o [6F oF, j 0 (GF oF, J 0 (aF 8F1]
diveurl F = + + —1
ox\ oy 0z oy\ 0z oX 0z\ ox oy
_WR, Wy oW WRXH
‘ﬁ%ﬁv oxdx | pyex  pfox | ordx  pRoy

The divergence of the gradient of a scalar function is the Laplacian:

o’f  o*f o°f
+ +
ox>  oy* 01°

div(grad f) = VeVf = V*f =

for all twice-differentiable scalar functions f.

In orthogonal non-Cartesian coordinate systems, the expressions for the gradient operator
are not as simple.
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5.02 Differentiation in Orthogonal Curvilinear Coordinate Systems

For any orthogonal curvilinear coordinate system (us, Uy, Us) in R®,

' 1r L = 1 of
the unit tangent vectors along the curvilinear axesare &, = T, = Hs_,
i OU;
or
where the scale factors | h = o
i

The displacement vector T can then be writtenas 7 = ué, +u,é, +u.8,,
where the unit vectors &; form an orthonormal basis for R,

. 0 (1#]
1 (i=])
The differential displacement vector dr is (by the Chain Rule)
ar = Lau + Loy, + Pdu, = hdus, + hdué, + hdué,
ou, ’ ou,

and the differential arc length ds is given by
ds? = dredr = (hdy,)’ +(h,du,)” +(h,du,)’

The element of volume dV is

o(x,Vv,z
dv = hhh, dudu,dy, = ﬁ du,du,du,

1'~21¥3

Jacobian

ox oy oz

ou; oup  oug

= aX ay az duldUZdU3

8u2 aUZ 8U2

ox oy oz

6U3 8U3 8U3

Example 5.02.1: Find the scale factor hy for the spherical polar coordinate system
(x,y,z) = (rsin@cosg, rsin@sing, rcosé):

N T
or {%@ Q} = [rcos@cosg rcos@sing —rsinﬂ]T

00 | 60 06 00
= h, = S—; = \/rz cos’ @ cos’ ¢ + r?cos’@sin®¢ + r’sin’o

_ \/rz cos’ 6 (cos’ iN“g) + r’sin’6 = \/rz (cos’6 +sin’ @) = r
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5.03 Summary Table for the Gradient Operator

Gradient operator v_809 & 0 & 9
h éu, h,ou, h au
Gradient VvV = eV &NV + é_sﬂ
hou  h,ou, hou
Divergence VeF = 1 o(h, h3F1)+8(h3 h1F2)+8(h1 h,F,)
hhh, oy, au, a,
A 0
e, — F
he o hR
Curl VxF = 1 h, &, 9 h, F,
h h, h, ou,
A 0
h3e3 a h3 F3
3
Laplacian V2V = 1 | 9(hhov L9 h b V. L9 hh, oV
hh,h {oul h ou) ou,{ h, ou,) ou,{ hy ou,

Scale factors:

Cartesian: hy =hy =h, = 1.
Cylindrical polar: h,=h,=1, hy = p.
Spherical polar: hr =1, hg=r, hy=rsing.

Example 5.03.1: The Laplacian of V in spherical polars is

VAV = 21_ Q( 2sin¢9%j+i(sin9gj+i AL
resiné | or or 00 00 ) 0¢\sin@ oO¢
2 2 2
or V& = g 2N, iz g+cot9% + %g
or ror re\ o6 06 resin“ 6 o¢
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Example 5.03.2

A potential function V (F) is spherically symmetric, (that is, its value depends only on

the distance r from the origin), due solely to a point source at the origin. There are no
other sources or sinks anywhere in R®. Deduce the functional form of V ().

V (F) is spherically symmetric = V(r,8,¢) = f(r)
In any regions not containing any sources of the vector field, the divergence of the vector
field F = VV (and therefore the Laplacian of the associated potential function V) must

be zero. Therefore, forallr#0, divF = VeVV = VA =0
But

VA& = 21_ 2( 2sinéiﬂj+i(sin0&j+i —_1 N
resiné@\ or or 00 00 ) 0¢\sing o¢

= V& = 1 (i(rzmd—vj+0+oj=o
dr dar

r? sind
— i(rzd_vj: = rzd—V:B - d—V:BF_Z
dr dr dr dr
-1
= V = + A, where A, B are arbitrary constants of integration.

Therefore the potential function must be of the form

v(r,e,¢):A_$

This is the standard form of the potential function associated with a force that obeys the

. 1
inverse square law F oc = .
r
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5.04 Derivatives of Basis VVectors

Cartesian: 2 =Ej 950
dt dt dt

Cylindrical Polar Coordinates:

X=pCcos¢, y=psSing, z=12
d . d¢,
mp_m¢
d . dg,
m¢_ at ©
d%-0
dt

Spherical Polar Coordinates.

The “declination” angle 6 is the angle
between the positive z axis and the
radius vector r. 0<f<m.

The “azimuth” angle ¢ is the angle on

the x-y plane, measured anticlockwise

from the positive x axis, of the shadow

of the radius vector. 0< ¢<2x.
Z=rcosf.

The shadow of the radius vector on the
x-y plane has length r sin 6.

It then follows that

X = rsin @ cos ¢

gf = %é + %sineﬁ
dt dt dt
dg__99% %0030;13
dt dt dt

d

é = —%(sin@f+coseé)

-
I

<
Il

r =

= Vv

°
>

Xi+yj+zK

)'(f+yj+z'I2

+ zk

= pp+phd+1k

[radial and transverse components of V]

and y =rsindsin¢.

Fooin &

r=rf

PP +rd0+rgsinbg
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Example 5.04.1

Find the velocity and acceleration in cylindrical polar coordinates for a particle travelling

along the helix x=3cos2t, y=3sin2t,z=t.

Cylindrical polar coordinates: x=pcos¢, y=psing, z=z2

= p?=x%+y?, tan¢:z
X

p? =9c0s°2t+9sin’2t =9 = p=3 = p=0

_3sin2t

= —tan2t = ¢g=2t = =2
3cos 2t ¢ ¢

tan ¢

= F=3p+zk

= §= %:p,b+p¢'5¢3+z'f< = 0p+3x24+1k = 64+K

[The velocity has no radial component — the helix remains the same distance from the

z axis at all times.]

Other examples are in the problem sets.

END OF CHAPTER 5
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6. Calculus of Variations

The method of calculus of variations involves finding the path between two points that
provides the minimum (or maximum) value of integrals of the form

b
J' F(xy,y")dx
a

Sections in this Chapter:
6.01 Introduction

6.02 Theory

6.03 Examples

Sections for reference; not examinable:

6.04 Integrals with more than One Dependent Variable
6.05 Integrals with Higher Derivatives

6.06 Integrals with Several Independent Variables

6.07 Integrals subject to a Constraint
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6.01 Introduction

Example 6.01.1

To find the shortest path, (the geodesic), between two points, we need to find an
expression for the arc length along a path between the two points.

Consider a pair of nearby points.
The element of arc length As is approximately
the hypotenuse of the triangle

(As)" = (&%) + (ay)’
(as)° _ (ax)° (A )2
(Ax) (Ax) (Ax)

In the limit as the two points approach each
other and Ax — 0, we obtain

&) -+
dx dx
2
2
dx dx
The arc length s between any two points x = a and x = b along any path C in R? is the
line integral

dy2 J‘ RY .
= |ds = 1+|—=| dx = 1+ (f d h C isthepath y=f
S (I:s J" +(dx] X C«/ +(f'(x))" dx where C isthe path y=f(x)
C

The geodesic will be the path C for which the line integral for s
attains its minimum value. Of course, in a flat space such as

IR?, that geodesic is just the straight line between the two points.
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6.02 Theory

We wish to find the curve y(x) which passes through the points (x,,Y,) and (x.Y;)
and which minimizes the integral

X

| = J.X F(xy(x),y'(x))dx
0

Consider the one parameter family of curves y(x) = u(x) + ar(x), where « is a real

parameter, 5(x) is an arbitrary function except for the requirement 7(x,)=7(x,)=0

and u(x) represents the (as yet unknown) solution.

Every member of this family of curves passes through the points (X, yo) and (xi, y;).
For any member of the family,
X
() = I 1F(x,u(x)+a77(x),u’(x)+a n'(x))dx
Xo
we know that y(x) = u(x) minimizes I.

Therefore the minimum for | occurs when o = 0, so that dr = 0.
daly -0

Carrying out a Leibnitz differentiation of the integral I (a), F

dl X 9 /I\ :
— =0-0+ I —F(x,u(x)+an(x),u(x)+an'(x)) dx Xy oy
da X, O A A

4 oF o oF & rarda
_ J-xo {O + Ea(u(xﬁan(x)) + aylg(u'(x)+oz77’(x))}dx

At the minimum « =0, so that y(x) = u(x) and y'(x) = u'(x). Therefore
0= J‘Xl[ (x)ﬁ + ’(X)GF}dx
X, 7 ou 7 ou’

Also note, by the product rule of differentiation, that
d

0 ) = 0%+ w0 S L]

Therefore the integral can be written as

0= .Xl{n(x)% + % n(x)%) - n(x)%(;’iﬂdx

v XO
0= B (X)_ﬁ -4 al:j_dx + J.Xli( (X)ﬁj dx
°Xo77 | au dx\ou') | X, dx 7 ou’
.Xl r T Xl
0= 77(x)ﬁ—i aFj dx+{n(x)aF}
J %, | ou  dx\ou')] ou’ Jx,
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But n(xo) = n(xl) =0
Therefore the minimizing curve u(x) satisfies

[n E 2 o = o
Xon ou dx \ ou’

But 7(x) is an arbitrary function of x, which leads to
oF d (GFj _o
ou dx\ ou’

b
Thus, if y= f (x) is a path that minimizes the integral J. F(xy,y)dx,then y=f(x)
a

and F (x,y,y") must satisfy the Euler equation for extremals
dfoF| oF _ 0
dx | oy’ oy

Euler’s equation requires the assumption that F(x, y, y") has continuous second
derivatives in all three of its variables and that all members of the family

y(x) = u(x) + a n(x) have continuous second derivatives.

Expansion of Euler’s Equation:

B
b
d (oF , oF , B
&[@,(X,V(X),v (X))J - 5 V()Y (%) = 0 x/%\i,
OF i OF N
axay!+y(x)ayayr+y(x)ay!2_a_y_o X X
or

Y'Fyy + YFyy + (Fy = Fy) = 0

z

Note: Leibnitz differentiation of 1(z) = Ig((;F(x,z)dx with respect to z is:
f(z

dl 9(2) o

- (F(9(2).2) - FF(1(2)2) + [, ZF(x2)ox

A . I r |. - d ' Xf | f
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