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6.03 Examples

Example 6.03.1

Xl ( y,)Z
(@ Find extremals y(x) for | = j ~——dx.

xg X
(b) Find the extremal that passes through the points (0, 1) and (1, 4).
(c) Prove that the extremal in part (b) minimizes the integral I.

2
@ F-) :%:o
X

Euler’s equation simplifies to

"2 ,
dx| oy’ x° dx | x3

!

2y ' 3 4
= F=6 = y' = Sex = y=3cxt +¢,
Redefining the arbitrary constants, this leads to the two-parameter family of
extremals

y(x) = Ax*+B

(b) Thecurve y(x) = Ax* + B must pass through both (0, 1) and (1, 4).
1=0+B = B=1
4=AQ)"+1 = A=3

Therefore the extremal through (0, 1) and (1, 4)is T',: y=3x"+1.
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Example 6.03.1 (continued)

(c) Toprovethaty = 3x*+ 1 really is the path between (0, 1) and (1, 4) that minimizes

Xl ( y,)2
Xo X3

the value of the integral | = J. dx, consider the related family of functions

r: y=3x"+1+g(x), where g(0)

g(1)=0 and g(x) is otherwise arbitrary.
2

I(r) = J-l(y')z dx = r(m%g'(x)) dx

0 X3 0 X3

°1(12x3)2 + 24x3g'(x) + (g’(x))2
) Jo X3 dX

- .l@ dx + 24I:g’(x) dx + le dx

o X OX3

= I(T) = I(T,) + 24(9@—9@7) +I

1

X

Note that the integral J (g (3)) dx is necessarily positive, because g'(x) cannot
0 X

1 /(w2
wdx > 1(Iy) for0<x<1.
0o X

be identically zero on [0, 1] and the integrand is non-negative on [0, 1].
Also g(0)=g(1)=0. Therefore I(I')>1(T,) and I'; minimizes I.

0
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If F is explicitly independent of x and y, so that the integral to be minimized is of the

X
form | = I 1F(y’) dx, then Euler’s equation simplifies to

)
GE)-F =0 F 'F "Fo — Fy = 0
&(y’)_y_ = Fyx ¥ Y Py ¥ ¥hyy = Fy =

-0 =0 =0

= | YRy =0
If Fy, £0 then y"=0 = |y(x)=Ax+B (a line).

Example 6.03.2 (Example 6.01.1 revisited)

Show that the geodesic on R* between any two points x =a and x = b is the straight
line between the two points.

The arc length s between any two points x =a and x = b along any path C in R? is the
line integral

sldsimdx

X
This integral is of the form | = I '

F(y')dx, where F(y') = 1+ (y')°.
X0

Clearly

Fyys 20 = y(x)=0vx = y(x)=Ax+B

which is a straight line.

But the extremal must pass through both points.

Only one straight line can pass through a pair of distinct points on R?.
Therefore the geodesic is the straight line between the two points.
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If F is explicitly independent of y, so that the integral to be minimized is of the form

X
| = I 'F (x, y') dx, then Euler’s equation simplifies to

X0
%(Fy,)—0=0 = [F, =¢

If F is explicitly independent of X, so that the integral to be minimized is of the form

X
| = I 'F (y,y') dx, then multiply Euler’s equation
X0

o) -+
by y' to obtain

y'di(Fy,) ~yF, =0 = (%(y’Fy,) - y”Fy,J ~ yFy =0

y =0

Btd_F:ﬁJradeJrade:O+ 8F+y,,ﬁ
dx OX oy dx  oy' dx oy oy’
d/, dF ; —

= &(yFy,)—&—O = |YF, - F=¢

Example 6.03.3 The Brachistochrone Problem of Bernoulli (1696)

Find the curve y=f (x) such that a particle sliding under gravity but without friction on
the curve from the point A(X,,Y,) tothe point B(x,y,) reaches B in the least time.

The sum of kinetic and potential energy of the particle is constant along the curve:
E = Imv + mgy = const.

_d E = lm(%T + mgy = const
dt 27 dt '

o _ [E S B

— 29y

= = dt =
dt m 2E
m
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Example 6.03.3 (continued)

Therefore the time taken to slide down the curve y(x) is

If the point A is at the origin, y is measured downwards and the particle is released from
rest, then the total energy is E = %m(O)2 + mg(0) = 0 and the integral for travel time
simplifies to

Xg "2
1+(y)
tly(x)| = ————dx
ool - [
The integrand is an explicit function of y and y' only, not x.
When F is explicitly independent of x, y'Fy, -F=c
y 1+ (y)
A/Zg \/1+ y’)2 29y
"2 "2 N2
= (v - (L (V) = a2ev(t+ ()

= 1l=g¢ 2gy(1+ (y) ) = Y(l+ (Y')Z) =C,

= = C

Use the substitution y' =

Q_|Q_
<

=tang. Then

y(t+tan*g) = c, = ysec2¢ =c, = y=c,co8°¢= Cz(lJrC—SSM)
do= o (2osACsing) 4 2singcos
tan¢ tan ¢ [Wj

COS ¢
= dx = —c,(2cos’§)dg = —c,(1+cos2¢) dg

= X = —czj(1+c032¢)d¢ (¢+sm2¢j + C,

Therefore the solution can be expressed in parametric form by
(X(#), Y(¢)) = (c; + r(2¢ + sin2¢),—r (L + cos2¢))

C
where r = -2,

2
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Example 6.03.3 (continued)

Replacing 2¢ by 6+ and defininga = ¢c; + rr,

(x(0),y(0)) = (a + r(6 —sind),—r(1 - cosp))

which is the parametric equation of a two-parameter family of cycloids.

+y
(25 )

>
W

(%, %)

Parameter a shifts the curve horizontally, while r changes the magnitude of the radius
of the generating circle. [A cycloid is the path generated by a point on the circumference
of a circle that rolls without slipping along an axis. @ is the angle through which the
rolling circle of radius r has rotated.]

Example 6.03.4 (The Catenary)

Find the equation y=f(x) of the curve between points A(X,,Y,) and B(x,Y,)

which is such that the curved surface of the surface of revolution swept out by the curve
around the x-axis has the least possible area.

The element of curved surface areais 27y As, ¥
where As is the element of arc length. >

The total curved surface area is therefore
X=X

X
AzZﬂI 1yds:2nj by 98 gy
X=X Xo dx

Xl 2

= 272'"- y 1+(%J dx
X \} dx
0

The integrand is of the form F (y, y'),
with no explicit dependence on x.

Therefore the extremal is the solution of y’% - F =c, where
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Example 6.03.4 (continued)

y1f1+
= yy\/ﬂiy - y\f1+

!

= y(( ) ): 1/1+ = y=-¢ 1+(y')2

, d
- y2=c12(1+(y)2) - d—izi y—2—1

Let y=c, cosht

then ﬂ = J_r,\/coshzt — 1 = ++/sinh?t = *sinht

But dy d_dy_ c,sinht = iclﬂ o & 1 = X=*CL+C
dx dt  dt dx dt
Y
c ¢

Let A=c and B = ~% and note that cosh(t) is an even function.
Cl
Then the two-parameter family of extremals is

y(x) = Acosh [%+ B)

which is the catenary curve.
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Example 6.03.5

Find the geodesic (shortest path) between two points P and Q on the surface of a sphere.

Let the radius of the sphere be a and choose the coordinate system such that the origin is
at the centre of the sphere. The relationship between the Cartesian coordinates (X, Y, z)
of any point on the sphere and its spherical polar coordinates (¢, ¢) is

X =a s!n 0 C_OS @ & = constant & = constant
y = asinésin ¢
Z = acosd

Note that the radial coordinate r is constant

(r = a) everywhere on the sphere.

The element of arc length in the spherical polar
coordinate system is

ds* = dr? + r’dé + r’sin’ @ d¢’
But, on the sphere, dr =0
= ds* = a’(de” +sin’ 0 dg’)

2 2
(Ej = a’|1+ sinze(d—¢j
déo déo
The distance along a path on the sphere between points P and Q is therefore

s =j ds=I B go-| a 1+sin29(%j 4o
P p d& b dé

The geodesic between P and Q on the surface of the sphere is the function ¢(6) that
minimizes the integral for s.

dg

For x read @, foryread ¢, fory' read FY

2
The integrand is F(6,¢4,¢') = a\/l + sinze[g—g :

The integrand is an explicit function of ¢ and j—z but not of ¢.
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Example 6.03.5 (continued)

Therefore the Euler equation for the extremal, %(F@) - F¢ = 0, simplifies to

- 2 d7¢
oF asin e(dej

o¢' 2
¢ Jl + sinzeidﬂ
do
= [a sin%’(%n = ¢? (1 + sinze(d—(bn
dé do

2 2 2
= sin’g(a’sin’ 6 - cz)(%j =c2 = (%j = — ZC. > >
de do sin® 6(a’sin* @ - ¢?)
= 90 C
d0  sing\fa?sin?6 — c?
After substitutions, this can be integrated to a function ¢ (), which, upon conversion
back into Cartesian coordinates, can be found to lie entirely on a plane through the origin.

But the intersection of any plane through the origin with the sphere is just a great circle
on the sphere.

Alternatively, reorient the coordinate system (or rotate the sphere) so that one of the two
points is at the north pole (§=0). Then 2—; = ¢ becomes 2—; = 0 (because sin =0

at the pole and ¢ must have the same value everywhere on the path).
. d¢
asin’é (j
= do =0 = sinze(d—¢} =0

2 do
\/1 + sin? 0(32)

sin @ #0 along the path between the points, so

a¢ =0 = ¢ = constant
déo
which, again, is an arc of a great circle (a line of longitude from the north pole to the

other point).

Therefore the geodesic between any two points on the sphere is the shorter arc of the
great circle that passes through both points.
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Example 6.03.6

Find the path y =f (x) between the points (0, 0) and (#/2, 0) that provides an extremum
for the value of the integral

/2
_ N2 2 .
| = jo ((y) y 4ysmx)dx

F = (y)*—y? —4ysinx
%(%) — %: = %(Zy') +2y +4sinx =0

= y'+y =-2sinx

This is a second order linear ODE with constant coefficients and a pair of boundary
conditions (solution curve passes through (0, 0) and (#/2, 0)).

AE: 1°+1=0 = A=+]j

CF.: Yo = Acosx + Bsinx
P.S. Method of undetermined coefficients:

R(x) = —2sinx, but sin x is part of the complementary function.
Thereforetry y, = cxcosx + dxsinx = y, = —2csinX + 2dcosx — Y,
Substitute yp into the ODE:

Yo + Y, = —2csinX + 2dcosx = —2sinX
= c¢=1 d=0
Yp = XCOSX

G.S.: y = (x+A)cosx + Bsinx

Impose the boundary conditions:
(0,0): 0=A+0

(2,0: 0=0+8B
Therefore the complete solution is

y = f(x) = xcosx

It can be shown that this sole extremal solution leadsto | = —% <0

The trivial path y=0 leadsto | = 0
Therefore the extremum must be an absolute minimum.
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