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Example 8.02.3

An elastic string of length L is fixed at both ends (x =0 and x = L). The string is initially
in its equilibrium state [y(x, 0) =0 for all x] and is released with the initial velocity

Z—{ = g(x). Find the displacement y(x, t) at all locations on the string (0 < x <L)
(x.0)

and at all subsequent times (t > 0).

The boundary value problem for the displacement function y(x, t) is:
o’y _ 2 0%
- = Cc"—=
ot? ox?
Both ends fixed for all time: y(0,t) = y(L,t) =0 for t>0

forO<x<L and t>0

Initial configuration of string: y(x,0) = 0 for 0<x<L

oy

String released with initial velocity: — = g(x) for 0 < x<L
tixg
As before, attempt a solution by the method of the separation of variables.

Substitute y(x, t) = X(x) T(t) into the PDE:

0° 0° d’T d?X
ZXHTO) = ¢ Z(X(IT(Y)) = X = T
Again, each side must be a negative constant.

1 dT  1d%X Y

T dt2 X dx?

We now have the pair of ODEs
2 2
d>2(+iZX:O and dI
dx dt
The general solutions are
X (x) = Acos(Ax) + Bsin(Ax) and T(t) = Ccos(Act) + Dsin(Act)
respectively, where A, B, C and D are arbitrary constants.

+ A%¢T =0
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Example 8.02.3 (continued)

Consider the boundary conditions:
y(0,t) = X(0)T(t) =0 vt>0
For a non-trivial solution, this requires X (0)=0 = A=0.

y(Lt) = X(L)T(t) =0 vt=0 = X(L)=0

= Bsin(iL)=0 = 4, :”T”, (nez)

We now have a solution only for a discrete set of eigenvalues A,, with corresponding
eigenfunctions

Xp(x) = sin[nLLXj, (n=123..)

and
X

Y (X1) = Xo ()T (1) = sin(n%an (t), (n=123,..)
So far, the solution has been identical to Example 8.02.1.
Consider the initial condition y(x,0) = 0:
y(x,0)0=0 = X(x)T(0)=0 vx = T(0)=0
The initial value problem for T(t) is now
T" + 2%°T =0, T(0)=0, where A =”T”
the solution to which is
T.(t) = G, sin(””_L“j, (neN)
Our eigenfunctions for y are now

Yo (X 1) = X (X)Th(t) = Cnsin(ntxjsin(n?tj, (neN)
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Example 8.02.3 (continued)

Differentiate term by term and impose the initial velocity condition:
0 nzc) . (nzX
o, - Zole (e -
ot (x0) L

which is just the Fourier sine series expansion for the function g(x).
The coefficients of the expansion are

% - _j sm(n”ujdu

which leads to the complete solutlon

y(x,t) = %Z%U:g(u)sm(mTu)duJSin(nLLX]Sin(nT_Ctj

This solution is valid for any initial velocity function g(x) that is continuous with a
piece-wise continuous derivative on [0, L] with g(0) =g(L) =0.

The solutions for Examples 8.02.1 and 8.02.3 may be superposed.

Let yl(x,t) be the solution for initial displacement f (x) and zero initial velocity.
Let yz(x,t) be the solution for zero initial displacement and initial velocity g(x).

Then y(x,t)=y,(xt)+Y,(xt) satisfies the wave equation

(the sum of any two solutions of a linear homogeneous PDE is also a solution),
and satisfies the boundary conditions y(0,t) = y(L,t) = O:

y(x,0) = ¥, (x,0)+y,(x,0) = f(x)+0

which satisfies the condition for initial displacement f (x).
Y (%,0) = ¥y (%,0)+ Y, (x,0) = 0+ g(x),

which satisfies the condition for initial velocity g(x).

Therefore the sum of the two solutions is the complete solution for initial displacement
f (x) and initial velocity g(x):

y(x.t) = %2(]: f (U)Sin(%)du}sin(ntxjcos(ntﬁ}

=1

+ %: %“tg(u)sm(nt jdu}sm(ntstin(m—f{j

1
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Example 8.02.4

An elastic string of length 1 m is fixed at both ends (x = 0 and x = 1). The string is
initially in the shape of an arc of a parabola [y(x, 0) = x — x* for 0 < x < 1] and is released

with the initial velocity 9y

Hixg
isc=5ms™. Find the displacement y(x, t) at all locations on the string (0 < x < 1) and
at all subsequent times (t > 0).

=x-x* (0<x<1). Itisknown that the wave speed

In the formula for the complete solution of the wave equation,

y(xt) = %2“: f (u)sin(%}du}in(ntxjcos(n?t)

=1
2 N 1( " . (nzu . (nzX) . (nzct

+— )y = J. g(u)sm(—jdu sm(—}sm( j
ﬂcnzln[ 0 L L L

weknowthat L=1, c=5 and f(x) = g(x) = x-x*> forO<x<1.

Both integrals inside the summations are the same:

1
J’ (u—uﬁsin(?jdu = D Fi
i 1 —u’ it MATL
1 N
- _ +
(u=Du __2 5 [cosnzu + 1 2l;sinnﬂu 1-2y - CosRu
Nz (n;z') (n;z') 0 . nr
—9 ™ —sin.?z.ﬂ'zu
. (2T
“o-—2 |0 +o| - [|o-—2 |+0 .
(I’VZ) (nzr) 0 COs ML
()
, 0 (neven)
= 1-(-1)") =4 4 Let (odd n) = 2k -1
(n;r)3 (n;z)3 n odd)

The complete solution is

8N 1
xt) = —= ————sin(2k -1)zx| cos5(2k -1) zt +
yn) = 25 D (e [ (26-1)
A Maple file for this solution is available at

"www .engr .mun.ca/~ggeorge/9420/demos/ex8024 .mws".

sin5(2k—1)7th
5(2k-1)x



http://www.engr.mun.ca/~ggeorge/9420/demos/ex8024.mws�
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8.03 The Wave Equation — Vibrating Infinite String

Example 8.03.1

An elastic string of infinite length is displaced into the form y = f (x) and is released
from rest. Find the displacement y(x, t) at all locations on the string x € R and at all
subsequent times (t > 0).

The boundary value problem for the displacement function y(x, t) is:

2 2
a—gzcza—g for —o < x <o and t>0
ot oX
Initial configuration of string: y(x,0) = f(x) for xeR
String released from rest: 9] =0 for xeR

We no longer have the additional boundary conditions of fixed endpoints.
However, it is reasonable to insist upon a bounded solution.

Separation of Variables (or Fourier Method)

Attempt a solution of the form y(x, t) = X(x) T(t)
Again we find the linked pair of ordinary differential equations

X"+ @*X =0 and T" + 0%c®T =0

If w=0then X(x) = ax+b. However, for a bounded solution, we require a=0.
For other values of w, X(X) = a cos wx + b sin wx , which is bounded for all x and all w.
The @ =0 case is a special case of this solution.

We have a continuum of eigenvalues « with corresponding eigenfunctions
Xp(X) = a,c0s(@X) + by, sin(wx)
It then follows that T

»(t) = ¢, cosmct +d, sinct

Imposing the initial condition of zero velocity,

M X(T(0) = X(X)dywe =0 WxeR = d,
at (X,O)
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Example 8.03.1 (continued)

Therefore we have, for any real , a solution of the wave equation and the initial velocity
condition,

Yo (Xt) = X4 (X)T,(t) = (a,c0s(@x) + b, sin(ax))cos(act)
[where c,, has been absorbed into the other arbitrary constants a, and b, .]

The superposition of solutions now leads to an integral, not a discrete sum.
y(x,t) = J: Yo (xt)do = jgo(awcos(a)x) + by, sin(@x))cos(wct) de
Imposing the remaining condition,
y(x,0) = J.go(aa,cos(a)x) + b, sin(wx))de = f(X)

But this is just the Fourier integral representation of f (x) on (—o, o).
Therefore a, and b, are justthe Fourier integral coefficients

= —_[_OO Jcos(wu)du and b, = —J._OO )sin(wu)du

The complete solution is

y(x,t) = J':Klji f (u)cos(mu)dujcos(wx)

T
+ (ljw f(u)sin(a)u)dujsin(a)x)}cos(a)ct)da)
JT & —0
which, after re-iteration (interchanging the order of integration) is
y(x.t) = —I I (cos(wu)cos(wx) + sin(wu)sin(wx)) f (u)cos(wct) dw du
l [e o]
= y(xt) = — _Oof(u)jo cos(a)(u—x))cos(a)ct)da)du

R (u)j:(cos(a)(u—XJrct)) + cos(a)(u—x—ct))) de du

27 J-
_ 1 wf(u)[sin(a)(u—xmt))+sin(a)(u—x—ct))}woodu
27 ) u—Xx+ct u—x-—ct "0
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8.04 d’Alembert Solution

One form of the solution to Example 8.03.1,

y(x.t) = 1 j‘wf(u){sin(a)(u—xwt)) N sin(a)(u—x—ct))] - i
- w=0

E u—x+ct u—x-—ct

suggests that, in general, one might seek solutions to the wave equation of the form

y(xt) - f(x+ct); f(x—ct)

-z
Let r=x+ct and s=x-ct, then y(r,s)=wand r/ \

=
oy oyer oyos 1., , /\ /\
" 3rox T Bsox E«f (r)+0)x1 + (0+f (s))xl), N 1N

2
2y _ i[@_yJ _ i[ﬁ_y]ﬂ . i[ﬂjﬁ = Lty = 17(s)x),
OX OX\ OX or{ ox | ox 0s\ OX ) OX 2
oy oyor o0y 0s 1, ., ,
E = aa + EE = E((f (r)+0)XC + (O+f (S))X(—C)),

o’y o (doy)or of(oylos 1
ZJ _ 2|2 |2 il il A P f!l _ f” _
ot Gr[atjat ’ 83(6t o = 5 (cf(nxe = et(s)x(e)).
oy 10 _ 1., , 1 2cn ]
W_C_ZWZE(f (r)+ f (S))_Z_CZ(CZf (r)+02f (S)):O,
f(x+ct) + f(x—ct)
2
twice differentiable functions f (u). This is part of the d’Alembert solution.

Therefore y(x,t) = is a solution to the wave equation for all

This d’ Alembert solution satisfies the initial displacement condition:
f(x+0)+ f(x-0
() = L0 100 gy

cf'(x+ct) — cf'(x—ct
Also gy(x,t) = ( ) ( )| -
0 t=0 2 |t: 0 2
The d’Alembert solution therefore satisfies both initial conditions.
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A more general d’Alembert solution to the wave equation for an infinitely long string is

f(x+ct) + f(x—ct 1 [ xtct
y(x,t) = ( ) ( ) J’X_Ct g(u)du

+_
2 2C

This satisfies the wave equation

2 2
6_3/2028_32/ for —o < x <o and t>0
ot 0X
and
Initial configuration of string: y(x,0) = f(x) for xeR
and
. . oy
Initial speed of string: = =g(x) for xeR
at (X,O)

for any twice differentiable functions f (x) and g(x).

Physically, this represents two identical waves, moving with speed c in opposite
directions along the string.

X+ct

Proof that y(x,t) = ZLCJ‘ g(u)du satisfies both initial conditions:
X—ct

1

1 X+Ct X
y(x,t) = Z_CJ.x—ct g(u)du = y(x0) = 2—ij g(u)du =0

Using a Leibnitz differentiation of the integral:

% = Zic(g(x+ct)-%(x+ct) - g(x—ct)-%(x—ct) + I

x—ct

g(x+ct) + g(x—ct)
2

= 2ic(c:g(x+ct) +cg(x-ct) + 0) =

%y

_ g(x+0) + g(x-0) _
ot - = 9(x)

2

t=0
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Example 8.04.1

An elastic string of infinite length is displaced into the form y = cos 7 x/2 on [-1, 1]
only (and y = 0 elsewhere) and is released from rest. Find the displacement y(x, t) at all
locations on the string x e R and at all subsequent times (t > 0).

For this solution to the wave equation we have initial conditions

y(%,0) = f(x) = cos(%xj (-1<x<1)

0 (otherwise)

and

oy

=2 (x,0) = -0

Y (x.0) = g(x)
The d’Alembert solution is

— X+ct B
y(x.t) = f(x+ct)42r f (x—ct) N %J- (u)du = f(X+Ct);— f(x—ct) L0
x—ct
cos z(x+ct) (-1-ct<x<l-ct)
where f(x+ct) = 2
0 (otherwise)

2
0 (otherwise)

cos M (-1+ct<x<l+ct)
and f(x—ct) =

We therefore obtain two waves, each of the form of a single half-period of a cosine
function, moving apart from a superposed state at x = 0 at speed ¢ in opposite directions.

See the web page "www.engr.mun.ca/~ggeorge/9420/demos/ex8041.html" for
an animation of this solution.



http://www.engr.mun.ca/~ggeorge/9420/demos/ex8041.html�
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Example 8.04.1 (continued)

Some snapshots of the solution are shown here:

ct=0.0 ct=05
\ b
3 2 1 2 3 3 2 4 1 2 3
X X
ct=07 ct =085
11 1]
0.5 0.5
3 2 1 2 3 3 1 2 3
® ®
ct=1.0 ct=20
14 1]
0.5 0.5
0.6 06
¥ ¥
0.4 0.4
0% 0.2
3 2 HAY 1 2 3 3 2 ERE 1 p) 3

X X
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A more general case of a d’Alembert solution arises for the homogeneous PDE with
constant coefficients
2 2 2
Aa u LB o°u C o°u

> + > =20
oX ox oy oy

The characteristic (or auxiliary) equation for this PDE is

AA> +BA+C =0
This leads to the complementary function (which is also the general solution for this
homogeneous PDE)

u(x,y) = fi(y+ax) + f,(y+4,x),

where

—B++D

A
! 2A

_-B-VD and 4, =
2A

and D = B®-4AC
and f, f, are arbitrary twice-differentiable functions of their arguments.
A, and A, are the roots (or eigenvalues) of the characteristic equation.

In the event of equal roots, the solution changes to
u(x,y) = fi(y+4x) + h(x,y) f,(y+1x)
where h(x, y) is any non-trivial linear function of x and/or y (except y + Ax).

The wave equation is a special case with y=t, A=1,B=0, C=-1/c?and A = + 1/c.
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Example 8.04.2

2 2 2
au_3 ou +28u

2 7 =0
0X oX oYy oy

u(x, 0) = —x°
uy(x,0) = 0
@) Classify the partial differential equation.
(b) Find the value of u at (x,y) = (0, 1).
@ Compare this PDE to the standard form
2 2 2
ali + B ou + ali =0
0X ox oy oy
A=1, B=-3, C=2 = D=9-4x2=1>0
Therefore the PDE is hyperbolic everywhere.
+
(b) /1=+3;\/i —1or?2

= uxy) = fly+x) + gly+2x)
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