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Example 8.04.2
2 2 2
0U 30U 04
0X OXoy oy
u(x, 0) = —x°
u(x,0) = 0

@) Classify the partial differential equation.

(b) Find the value of u at (x,y) = (0, 1).

@ Compare this PDE to the standard form

2 2 2
alj + B ou + 61; =0
0X oXoy oy
A=1, B=-3, C=2 = D=9-4x2=1>0
Therefore the PDE is hyperbolic everywhere.

) 4= +3§I1 ~lor2 Cho e
= uxy) = fy+x + gy+2x (x|+,v)
= Wxy) =f'ly+x + gly+2x x+y
Boundary conditions: x/ \}
U 0) = £09 + g@x) = ¢ @
and
Uy(x 0) = f'(x) + g'(2x) = 0 2
a ! !

6_(1) = f'(x) + 2¢'(2x) = —2x (3)
X

B -0@ = g@ =-2x = gK =~

= g(x) = -3xX+k = g(y+2x) = —%(y+2x)2+k
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Example 8.04.2 (continued)

Also (1) = f(x) = ¢ - g(@x) = -x* + %(2x)*-k = x¥*-k
= fly+x = (y+x° -k

Therefore u(x,y) = f(y +x) + g(y + 2x)
= (y+x)° -k —(y+2x?/2 + k

= %(Zyz+4xy+2X2—y2—4Xy—4X2) = %(yz_zxz)

The complete solution is therefore u(x,y) = %(y2 -2x%)

= u(0,1) = %(12—02) = %

[It is easy (though tedious) to confirm that u(x,y) = %(y2 —~2x7) satisfies the partial

. : . d« o%u o°u . i .
differential equation —- — 3 + 2— = 0 together with both initial conditions
oX ox oy oy

u(x,0) = —x* and uy(x, 0) = 0.]

[Also note that the arbitrary constants of integration for f and g cancelled each other
out. This cancellation happens generally for this d’ Alembert method of solution.]
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Example 8.04.3

Find the complete solution to
o°u o°u o’u

6— -5 +— =14,
oX oxXoy 0y
ux,0) = 2x+1,

uy(x, 0) = 4 —6x.

This PDE is non-homogeneous.
For the particular solution, we require a function such that the combination of second

partial derivatives resolves to the constant 14. It is reasonable to try a quadratic function
of x and y as our particular solution.

Try U, = ax’+bxy+cy’

A = 2ax+by and Wy = bx+ 2cy
oX oy

2 2 2
0 UZP =2a, O =b and 0 u; = 2c
oX oxoy oy
2 2 2
= g2 50U O g5n g5pioc =14

ox? oxoy oy’
We have one condition on three constants, two of which are therefore a free choice.
Choose b=0 and c=a,then 14a=14 = c=a=1
Therefore a particular solution is u, = x* +y?

[But we could have chosen, for example, a=b =0 and ¢ =7 instead — u, =7y?]

Complementary function:
A=6, B=-5, C=1 = D=25-4x6=1>0

Therefore the PDE is hyperbolic everywhere.

12 3 2
The complementary function is
Ue(X,y) = f(y+%x) + g(y+%x)
and the general solution is
u(xy) = f(y+%x) + g(y+%x) + x2+y?
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Example 8.04.3 (continued)

u(xy) = f(y+%x) + g(y+%x) + X2 +y?
ou

= ay f'(y+%x) + g’(y+%x) + 2y

Imposing the two boundary conditions:

u(x,0) = f(%x) + g(%x) + x% = 2x+1
and

D) = g($x) =2x+1-x" - f($x) = 2x+1-x" + 9("_2

u(xy) = f(Y"‘%X) + g(y+%x) + x2+y?

= u(xy) = —9(y+%x)2 +k + 4(y+%x) +1-k + x2+y?
[again the arbitrary constants cancel - they can be omitted safely.]

= —9y?—6xy—x* + 4y + 2x + 1L+ x> +y?

Therefore the complete solution is

u(x,y) =1+ 2x + 4y—6xy —8y?

1)

()

(3)

;)
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Example 8.04.3 - Alternative Treatment of the Particular Solution

Find the complete solution to
o°u o°u o’u

6— -5 +— =14,
oX oxXoy 0y
ux,0) = 2x+1,

uy(x, 0) = 4 —6x.

This PDE is non-homogeneous.

For the particular solution, we require a function such that the combination of second
partial derivatives resolves to the constant 14. It is reasonable to try a quadratic function
of x and y as our particular solution.

Try U, = ax’+bxy+cy’

N = 2ax+by and N = bx + 2cy
oX oy

2 2
au;:Za, Oy _ b and :
ox X 0y oy
2 2 2
= 6% 50U O 15 ghyoc =14
oX oxoy oy

\We have one condition on three constants, two of which are therefore a free choice.

Let us leave the free choice unresolved for now.

Complementary function:

12 3 2
The complementary function is
ug(xy) = fy+3x) + g(y+3x)
and the general solution is
u(xy) = f(y+%x) + g(y+%x) + ax? +bxy +cy?
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Example 8.04.3 (continued)

u(xy) = f(y+%x) + g(y+%x) + ax® +bxy +cy?
= 2—3 = t'(y+1x) + g'(y+3x) + bx+2cy

Imposing the two boundary conditions:

u(x,0) = f(%x) + g(%x) + ax’+0+0 = 2x+1
and

uy (x,0) = f’(%x) + g’(%x) +bx+0 = 4-6x
%(A) = %f’(%x) + —g'(%x) + 2ax =

(B) - 2x(C) = %f’(%x)+(b—4a)x =4-6x—4

= f'(3x) = 3(4a-b-6)x = 9(4a-b-6)(3x) =
9(4a-b-6) ,

= (X)) = Sk

A) = g(%x) =2x+1-ax® — f(%x) = 2x+1-ax® —

= g(x) =2(2x) +1 - (w
But

u(xy) = f(y+%x) + g(y+%x) + ax? +bxy+cy?
9(4a—-b-6)

+1x) +k
2 (y 3)

= u(xy) =

+ 2(b+6—6a)(y+%x)2 + 4(y+%x) +1-k + ax?+bxy+cy?
[again the arbitrary constants cancel - they can be omitted safely.]

_ 9(4a-b-6)

- —(y2+%xy+%x2) + 2(b+6-6a)(y’ +xy+%x°)

2
+ 4y +2x+1 + ax® +bxy+cy?

(A)

(B)

(©)

4 (4a-b-6)

2

f'(x) = 9(4a—b—6)x

-

j(Zx)2 —k = 2(b+6-6a)x’ +4x+1-k
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Example 8.04.3 (continued)

_ 9(4a‘b‘6)+4(b+6‘6a)+chyZ + (3(4a—b—6)+2(b+6—6a) + b)xy

2
(4a-b-6)+(b+6-6a)+2a
2

12a—-5b+2c-30

- : ]yz — 6xy + 0x* + 4y +2x+1

sz + 4y +2x+1

12a-5b+2c-30 14-30
2 2

But 12a-5b+2c = 14 -8

Therefore the complete solution is

u(x,y) =1+ 2x + 4y—6xy —8y*

and note how the values of the two free parameters have no effect whatsoever on the
solution.

In practice, assign values to the free parameters in the particular solution only after one of
the two arbitrary functions from the complementary function has been determined - if
possible, make that function zero. In the example above, when we found

f'(x) = 9(4a-b-6)Xx,

choose a=0 and b=-6 = f'(x)=0

and, from 12a—5b+ 2c = 14, we also have c=-8.

A) = g(%x) =2x+1-ax® — f(%x) = 2x+1-0-0 = g(x) =4x+1
The general solution then becomes

u(xy) = f(y+%x) + g(y+%x) + ax? +bxy+cy?

u(xy) = 0+ 4(y+3x)+1+ 6xy-8y> =

u(x,y) =1+ 2x + 4y—6xy —8y*

as before, but much faster!
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