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Example 8.04.4

Find the complete solution to
o°u o%u o°u
>+ 2 + -
oX oxXaoy oy
u=0 on x=0,
u=x* on y=1.

:01

A=1, B=2, C=1 = D=4-4x1=0

Therefore the PDE is parabolic everywhere.

-2+
2_T\m:—lor—l

ﬂ:

The complementary function (and general solution) is
u(x,y) = f(y—x)+h(xy)g(y-x)

where h(x, y) is any convenient non-trivial linear function of (X, y) except a multiple of

(y—x). Choosing, arbitrarily, h(x, y) = X,
u(x,y) = f(y-x)+xg(y-x)

Imposing the boundary conditions:

u@,y) =0 = f(y)+0 =20

Therefore the function f is identically zero, for any argument including (y — x).

We now have u(x,y) = xg(y—x).
ux,1) = x¥* = xgl-x)=x¥ = gl-x) =x

Therefore
ux,y) = xgly—-x) = x(1-(y-x)

The complete solution is

u(x,y) = x(x—y+1)

= gx) = 1-x
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Example 8.04.4 - Alternative Treatment of the Complementary Function

Find the complete solution to
o°u o%u o°u
>+ 2 + -
00X oXoy oYy
u=0 on x=0,
u=x on y=1.

:01

A=1, B=2, C=1 => D=4-4x1=0
2+ 40
2
The complementary function (and general solution) is
u(xy) = f(y-x) + h(xy)g(y-x)
where h(x, y) is any convenient non-trivial linear function of (X, y) except a multiple of
(y—X). The most general choice possible is h(x, y) =ax+ by, with the restriction

a=Ab.

A= =-1lor -1

u(xy) = f(y—x) + (ax+by)-g(y—x)
= u(0,y)= f(y)+by-g(y)=0 = f(y)=—by-g(y) (A)
[note: choosing b=0 — f (y) =0, as happened on the previous page] and
u(x1) = f(1-x) + (ax+b)-g(1-x) = x*
Using (A),
u(x1) = -b(1-x)-g(1-x) + (ax+b)-g(1-x) = x°

(7«t§+bx+ax;«t§)-g(1—x):x2 = (a+b)x-g(1-x) = X

= g(1-x) = —Xb (note that the restriction on h(x, y) ensures that a+b=0).
a+
1-y
j— = B
g(y) a+b ®)
-y
A = f = —by-—
) (y) y a+b

The complete solution becomes

u(xy) = —b(y—x)-%

(/b§+bx+axyb§) a+b M xzy+l

1-(y-x)

+ (ax+by) .

u(xy) = x(x—y+1)
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Example 8.04.4 Extension (continued)

It is easy to confirm that this solution is correct:

u(x,y) = x(x-y+1) =
u(0,y) =0(0-y+1) =0 vy v
and
u(x,1) = x(x-1+1) = x*> VX v
and
u(x,y) = xX*—xy+x = %:Zx—y and g—l;:—x
2 2 2
38—2:2, ou =-1 and al;:0
oX ox oy oy
2 2 2
o, QU U LOU 5 5i0-0 V(X y) v

2 + + 2
oX oxoy 0oy
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Two-dimensional Laplace Equation

oy ol

o T ayr =0

A=C=1, B=0 = D=0-4<0

This PDE is elliptic everywhere.

_0++/-4 .

A =t
> J

The general solution is

u(x,y) = f(y—ix) + g(y+ijx)

where f and g are any twice-differentiable functions.

A function f (x, y) is harmonic if and only if V=0 everywhere inside a domain Q.

Example 8.04.5

Is u = €*siny harmonic on R??

au _ eXsiny and o eXcosy
0X oy
o%u X - o%u . .
F:esmy and > = —e’siny
X
= Vzu—ﬂJraz—u—exsiny—eXsiny—O v(x,Y)
ox* = oy? ’

Therefore yes, u = €*siny is harmonic on R?.
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Example 8.04.6

Find the complete solution u (x, y) to the partial differential equation V?u =0, given the
additional information
ou

u(0,y)=y* and —| =0
OX|4_o
The PDE is
2 2
Vi = a—li+a—u2 =
ox® oy

(which means that the solution u(x, y) is an harmonic function).

= A=C=1, B=0 = D=B?’-4AC=-4<0
The PDE is elliptic everywhere.

AE:. 1*+1=0 = A=%]j

CF: uc(xy)=f(y—ix)+g(y+ix)

The PDE is homogeneous =

PS.: uy(xy)=0

GS.: u(xy)=f(y—ix)+g(y+ix)

= Uy (xy)=—Jf'(y-ix)+ jg'(y+ix)

Using the additional information,

u@y)=f(y)+a(y)=y = g(y)=y-f(y) = g'(y)=38"-1(y)
and

U (0,y) =0=—jf'(y)+ig'(y)=i(-f'(y)+3y* - f'(y))

= 2f'(y)=3y* = 2f(y)=y’ = f(y)=3y°

= g(y)=y' -1y’ =3y

Therefore the complete solution is

a(%y) = Hy- i) + 2+ ix)

= 3y - 30X 300X y= (3% + ¥+ 30T +3(3) v + (1

=y +3j%X%y =

u(xy) =y*-3x%

Note that the solution is completely real, even though the eigenvalues are not real.
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8.05 The Maximum-Minimum Principle

Let QQ be some finite domain on which a function u(x, y) and its second derivatives are

defined. Let Q be the union of the domain with its boundary.
Let m and M be the minimum and maximum values respectively of u on the boundary
of the domain.

If V2u>0 in Q, then u is subharmonic and
u(F)<M or u(r)=M VT in Q

If V2u<0 in Q, then u is superharmonic and
u(f)>m or u(f)=m VT in Q

If V2u=0 in Q, then u is harmonic (both subharmonic and superharmonic) and
u is either constant on Q or m<u<M everywhere on Q.

Example 8.05.1

ViUu=0in Q:x*+y*<1 and u(x,y)=1 onC: x*+y*= 1.
Find u(x,y) on Q.

u is harmonicon Q = ming (u) < (uo(nx';;)j < maxc (u)

But minc(u) = maxc(u) = 1

Therefore u(X,y) = 1 everywhere in Q.
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Example 8.05.2

V2 =0 inthesquare domain Q : -2 <x<+2, -2<y<+2.
On the boundary C, on the left and right edges (x = +2), u(x, y) =4 - y?,
while on the top and bottom edges (y = +2), u(x, y) = x* — 4.

Find bounds on the value of u(x, y) inside the domain Q.

For-2<y<+2, 0< 4—y*<4.

For-2<x<+2, -4< xX*-4<0.

Therefore, on the boundary C of the domain Q, -4 < u(x, y) <+4 so that
m=-4 and M = +4.

u(x, y) is harmonic (because V2u = 0).

Therefore, everywhere in Q,
-4 <u(x,y) <+4

Note:
u(x, y) = x> = y? is consistent with the boundary condition and
2 2 2
a—u=2X—0, a—u=0—2y = 8—3:2, 8[.; :_2:_8_3
0X oy oX oy 00X
2 2

= Vu = a—li + 8—% =0

OX oy

Contours of constant values of u are hyperbolas.
A contour map illustrates that —4 < u(x, y) < +4 within the domain is indeed true.

u=0-1 -4 & u=a 10
TN 2 T ]
) \ V..

| L
yx
+4 BRL
+1 /"ﬁ_ +1

u=0-1 -4 u=-4 -1 0
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8.06 The Heat Equation

For a material of constant density p, constant specific heat x and constant thermal
conductivity K, the partial differential equation governing the temperature u at any
location (X, y, z) and any time t is

M _ vy ,  Where K=K

ot up

Example 8.06.1

Heat is conducted along a thin homogeneous bar extending fromx =0tox =L. There is
no heat loss from the sides of the bar. The two ends of the bar are maintained at
temperatures T; (at x =0) and T, (at x =L). The initial temperature throughout the bar at
the cross-section x is f (X).

Find the temperature at any point in the bar at any subsequent time.

The partial differential equation governing the temperature u(x, t) in the bar is

au o°u
ot OX?

together with the boundary conditions
u(0,t)=T, and u(L,t)=T,
and the initial condition
u(x,0) = f(x)

[Note that if an end of the bar is insulated, instead of being maintained at a constant

temperature, then the boundary condition changes to Z—U(O,t) =0or Z—U(L,t) =0.]
X X

Attempt a solution by the method of separation of variables.
u(x, t) = X(x) T(t)

= XT =kx' T = kX ¢

T X
Again, when a function of t only equals a function of x only, both functions must equal
the same absolute constant. Unfortunately, the two boundary conditions cannot both be

satisfied unless T, =T,=0. Therefore we need to treat this more general case as a
perturbation of the simpler (T, =T, =0) case.
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Example 8.06.1 (continued)

Let u(x,t) = v(x,t) + g(x)
Substitute this into the PDE:
a 82 6V azv "
a(v(x,t)w(x)) = km(v(x,t)jtg(x)) = = k(ﬁ + g (X)J

This is the standard heat PDE for v if we choose g such that g"(x) = 0.
g(x) must therefore be a linear function of x.

We want the perturbation function g(x) to be such that
u(0,t)=T, and u(L,t)=T,
and
v(0,t) = v(L,t) =0
Therefore g(x) must be the linear function for which g(0)=T1 and g(L):TZ.
It follows that

g(x) = (Tz—Elex + T,

and we now have the simpler problem

ov 0%
— =k
ot OX
together with the boundary conditions
v(0,t) = v(L,t) =0
and the initial condition
v(x,0) = f(x) - g(x)

Now try separation of variables on v(x, t) :
v(x, t) = X(x) T(t)
1 TV X!! 3 C

= XT'=kX'T = —— =
kT X

But v(0,1) = v(L,t) = 0 = X(0) = X(L) = 0

This requires c to be a negative constant, say —°.
The solution is very similar to that for the wave equation on a finite string with fixed ends

(section 8.02). The eigenvalues are 4 = nT” and the corresponding eigenfunctions are

any non-zero constant multiples of
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Example 8.06.1 (continued)

The ODE for T(t) becomes

whose general solution is

Therefore
2_2
Vp (X,1) = X, (X)Th(t) = ¢y sin(nil_xjexp[—nt—zmj

If the initial temperature distribution f (x) — g(x) is a simple multiple of sin(nil_xj for

2_2
. . - . (nzx n“zkt
some integer n, then the solution for v is just v(x,t) = C, sm(%)exp(—%].

Otherwise, we must attempt a superposition of solutions.

Z Ch sm( jeXp{ t;ktj
such that v(x,0) i i (n;zxj = f(x) - g9(x).

N , . 2
The Fourier sine series coefficientsare ¢, = L
0

so that the complete solution for v(x, t) is

v(xt) = %nil[f:(f (z) - TZ[Tl z - Tjsm(nl_ jdz}sm(nijexp[— nzf;kt]

and the complete solution for u(x, t) is

u(x,t) = v(xt) + (TZ—Elex + T,

Note how this solution can be partitioned into a transient part v(x, t) (which decays to
zero as t increases) and a steady-state part g(x) which is the limiting value that the
temperature distribution approaches.
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Example 8.06.1 (continued)

As a specific example, let k=9, T; =100, T, =200, L=2 and
f (X) = 145x° — 240x + 100 , (for which f (0) = 100, f(2) =200 and f (x) >0 VX).
Then g(x) = L;loox + 100 = 50x + 100

The Fourier sine series coefficients are

2
Ch = J- 0 ((14522—2402+100)—(502+1OO))sin(n—sz dz

= ¢y =145j (22—22)sin(mjdz
0 2
After an integration by parts (details omitted here),
=2
8(z-1
= ¢, = 145 (—22+22)i + 163 cos(nﬂj G Z)Sin(nﬂj
Nz (nr) 2 (n7) 2

n = %((_1)n _1)

2

The complete solution is

X —\— n 2_2
u(xt) = 50x + 100 — 220 [1 (n3l) }sin(n’;‘}exp(_ 9nf t]

3
T- n=1

Some snapshots of the temperature distribution (from the tenth partial sum) from the
Maple file at "www.engr.mun.ca/~ggeorge/9420/demos/ex8061.mws" are shown
on the next page.



http://www.engr.mun.ca/~ggeorge/9420/demos/ex8061.mws�
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Example 8.06.1 (continued)
t = 0.000 t=0.010
200 2001
1501 150
f 100 100
501 50
U0 02040608 1 121416 18 2 Ul " 02040808 1 12 1416 18 2
E i
50 50
t = 0.050 t=0.100
2007 200,
1601 150
f 1001 i 1001
50 50-
0 02040608 1 121416 18 2 Ul 02040608 1 121416 18 2
® S
40 50

The steady state distribution is nearly attained in much less than a second!

END OF CHAPTER 8
END OF ENGI. 9420!
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