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1. For the partial differential equation
2 2
OU 2 30U _yy
oX ox oy oy
(@) Classify the partial differential equation as one of elliptic, parabolic or hyperbolic. [2]
(b) Find the general solution. [7]
(c) Find the complete solution, given the additional information [11]
u(0,y)=0, uy(0,y)=y’
(@ D=B?-4AC =4+12=16>0 = thePDEis
hyperbolic
-B+ -2+
@) 4-—BEND _2x4 4
2A 2

AE: u. = f(y-3x) + g(y+x)

P.S.:  The right side of the PDE is a first order polynomial.
The left side of the PDE involves second order derivatives only.

Therefore try u, = ax® +bx*y+cxy’ +dy*

= (up), = 3ax’+2bxy+cy’+0 and (uP)y = 0+bx* + 2cxy + 3dy?
= (Up),, = 6ax+2by, (u,,)xy = 2bx+2cy and (up)yy = 2cx+6dy
Substituting into the PDE,

(Up )y + 2(up)Xy —3(uF,)yy = 6ax+2by + 4bx +4cy — 6¢cx —18dy = 4y
= (6a+4b—6c)x + (2b+4c—18d)y = Ox+4y

= 3a+2b-3c=0 and b+2c-9d=2
The general solution is

u(x,y) = f(y=3x) + g(y+x) + ax’ +bx’y +cxy’ + dy’
where 3a+2b—-3c=0 and b+2c-9d =2
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1) u(xy)=f(y-3x)+ g(y+x) + a+bx*y+cxy” +dy’

= Uy (xy)=-3f"(y=3x) + g'(y+x) + 3ax’ +2bxy +cy*+0

u(0,y)=0 = f(y)+g(y)+ 0+0+0+dy’ =0 (A)

d

@(A) = f'(y)+ g'(y) = —3dy? (B)

uy (0,y) =y*> = =3f'(y)+ g'(y) + 0+0+cy’ = y* (C)
(c—3d-1)y?

(B)-(C) = 4f'(y)+0 = (c-3d-1)y* = f'(y) =

Now choose c=3d+1 = f'(y)=0 = f(y)=0

The two constraints on the four arbitrary constants now become
b+2(3d+1)-9d=2 = b=3d

and 3a+2(3d)-3(3d+1)=0 = 3a=3d+3 = a=d+1
(A) = 9(y)=—f(y) - dy’ = —ay’

Choose d=0 = g(y)=0, a=1, b=0, c=1

The solution becomes

u(x,y) =0+ 0+ 1 +0+1xy’+0 =

4

u(x,y) = x>+ xy’

Check (not required):

2 2
SX‘j + 2afgy - 32y‘j = (6x+0)+2(0+2y)-3(0+2x) = 4y ¥

u(0,y) =0+0=0 v
uy (0,y) = (3x2+y2)|)(:0:y2 v

Note that if no values are chosen for the four coefficients a, b, c, d, then the complete solution
becomes
(c—3d-1) s (1-9d—c)
u(x,y)=-——=(y-3x) + ——=
(xy) o (Y=3x) o
together with  3a+2b—-3c=0 and b+2c-9d =2
It takes some effort to show that this reduces to u(x,y) = x* + xy* !

(y+x)3 + ax® +bx?y +cxy® +dy?
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2 (a) Show that the only intersection of the curves y = e~

(b)

for some value of x

in the interval 0< x<1.

X2

and y=x must occur [7]

Use Newton’s method with a reasonable initial value x, to estimate, correct to [8]
five decimal places, the value of x at which f (x) =0, where

f(x) = x—e ¥

(@)

2 : . :
y=e% >0 Vvx = thecurves can intersect in the first quadrant only.

ie_xz
dx

= —2Xxe"

x2

<0 = y=¢¥

while y=x isincreasing forall x>0.
Therefore any intersection of these two curves is unique.

Define f(x) = x—e ™ then f(0)=0-¢"=-1<0, while f(1)=1-¢e">0
The unique solution of f (x) =0 must therefore be in the interval 0<x<1.

is decreasing forall x>0,

(b)

A reasonable first g

f(x) = x—e X

uessis X, =0.5

= f'(x)=1+ 2xe %

Newton’s method is based on the algorithm  x, ; = X, —

f'(x,
X f(xn) f'(xn) f(xq)! f' (%)
0.500 000 000 -0.278 800 783 1.778 800 783 -0.156 735 249
0.656 735 249 0.007 072 037 1.853 313 461 0.003 815 888
0.652 919 360 0.000 001 334 1.852 605 641 0.000 000 720
0.652 918 640 0.000 000 000
Correct to five decimal places,

X =0.65292
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3. The non-linear second order ordinary differential equation
2
d—;(+(1—x)%+4x—x2 =0
dt dt
can be represented by the system of first order ordinary differential equations
X =y
y = (x=1)y—4x+x?

(@) Find the locations of both critical points. [4]
(b) For each critical point, identify its nature (node, centre, focus or saddle point) and [7]

stability.
(c) Find the equations of the asymptotes for the linear approximation at any node or [7]

saddle point.

[Note: the general solution is not required.]
(d) Sketch the phase portrait in the [linear] neighbourhood of each critical point. [6]
(e) Sketch the phase portrait for the non-linear system, including both critical points. [6]

BONUS QUESTION

(F) Find the equation of the separatrix (the curve that separates trajectories that [+5]

terminate in a stable critical point from trajectories that recede to infinity).
@ x=0 = y=0

y=0 = 0-4x+x’=0 = x(x-4)=0

Therefore the only critical points are

(x,y)=(0,0) and (4,0)

(b) Near a critical point (a, b) the linear approximation to the non-linear system is

P, P

X = AX, where A = y
Qx Qy

o)

P=y 0 1
Q = (x-1)y—4x+x b-4+2a a-1
(0, 0):
0 1 2
A:{ A J = D=(a-d) +4bc =1-16 = -15<0
a+d)+x+VD —1++/-
A :( * ; = 1_2 15 - a complex conjugate pair with negative real part

= there is a stable focus at (0, 0).
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3 (b) (continued)

(4,0):
0 1 2
A= 43 = D=(a-d) +4bc =9+16 = 25>0
+
a+d)+/D +./ +
}tz( )2 /D = 3_225 = 355 = —-1,+4 - real with opposite signs

= there is a saddle point (unstable) at (4, 0).

(c) At the saddle point the eigenvectors are

for A=-1:

R BN

a . -1
= [ } = any non-zero multiple of { }
B 1

The inward asymptote is y—0 = —-1(x—-4) = |y =4-X

for A=+4:

S i

1
= | %= any non-zero multiple of
B 4

The outward asymptote is y—0 = 4(x—4) = y = 4x-16

(d) Near (0, 0) Near (4, 0)
¥

Y
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3 (e) Clearly the saddle point dominates in most of the first quadrant and part of the fourth

quadrant and the stable focus dominates in the third quadrant and at least half of the
second quadrant. What happens elsewhere is not so obvious. A phase portrait from
Maple is displayed here.

F =N W
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77N
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& .H.H 1

%%-

T4 1

11 Y

[ "

1 7

1 Y /

This plot suggests that the incoming asymptote y =4 — x to the saddle point may also be
the separatrix between orbits that terminate at the focus and orbits that recede to infinity.

()

We are seeking a solution to the non-linear system that passes through the saddle point.
dy dy dx _ (x=1)y —4x+x?

However, the exact solution to the ODE =
dx dt dt y

is not obvious!

Check to see if the incoming asymptote y =4 — x in the linear approximation near the
saddle point is also a solution to the non-linear system of ODEs:

dy

y=4-x => —=-1
dx

But, by the chain rule,

dy _dy dx

dx dt dt

a _ (x=1)y —4x+x? = (x=1)(4=x) = x(4=x) = (4=x)(x-1-X) = —(4-X)

—(4-
dx dy _ ( X):—lzi(4—x)
dt dx 4—X dx
Therefore y =4 —x is a solution to the non-linear system of ODEs.

All trajectories above this line recede to infinity.



ENGI 9420 2012 12 11 Final Examination Solutions Page 7 of 9

3 (f) (continued)

The other asymptote y = 4x — 16 to the saddle point in the linear approximation near the
saddle point is not a solution to the non-linear system of ODEs:

y =4x-16 = ﬂ:4

? = (x-1)(4x-16) - x(4-x)

|o_
<
I
—
>
|
=
A —
<
|
N
P
+
>
I

= (x—4)(4x—-4+x) = (3x—4)(x—4)
dx d (3x—4)(x—4) 3x-4
E:y:4x—16 = d_i: 4(x—4) = 2 # 4

Orbits below y=4—x cancrossthe line y=4x-16.

All trajectories in this region are swept into the stable focus.

Therefore the separatrix is the line
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4, A perfectly elastic frictionless string is fixedat x=0and x =2. Itisstretchedin [15]
a triangular configuration
¥ x (0<x<1)
x,0) = f(x) =
1 y(x.0) (x) {Z—X (1<x<2)

as illustrated and is released from rest.
The speed of waves on the string is ¢ = 6.

0 1 2 %
Find a Fourier series expression for the subsequent displacement y(x,t) of the
string. You may quote

y(x.t) = %iu: f (u)sin(MTUJdquin(ntxjcos(ntCtJ :

=1

L=2
2 b f
Cn :j f(u)sin(%)du
0 7, 24— sin ¥
:I usm(—jdu +I (2—u)sm(—jdu e
0o N2 : ? 1 1 2 goe P
Integrations by parts: N #IT 2

]

, 1 -
c, =|u _2 cos(wj - _2 sin(m) 0 \‘—[L]zsm@
nz 2 nz 2 0 n ]
2

0

8 . (nrx 8 1 . (nz). (nzX
_ 1) = _E —sin| -= |sin| —== |cos(3nrt
S (0 sm( > j = | y(xt) g e sm( 5 jsm( > jcos( nzt)

n=1

which can be rewritten as

© k+1
y(x,t) = %Z ((Z_kl)—l)z sin((2k _Zl)ﬂx}cos(B(Zk ~1)zt)
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5. Findthepath y=f(x) between the points (0,1) and (1, 2¢?) that providesan  [20]
extremum for the value of the integral

1
I :I ((y')2+9y2+12ye3x)dx
0

The Euler equation for extremals is dfor)_oF = 0.
dx\ oy’ oy

F isafunction of all three of X,y,y" = none of the special cases applies.

6F 8 "2 2 3x ' d aF "
-— = +9y° +12ye =2y+0+0 = — =2
% 6y’((y) Y ) ! dX(ay’] ’
oF 0 N2 2 3x 3x
- - = +9y° +12ye = 0+18y+12e
oy ay((y) y* +12ye™) y

d(oF)_oF _ 2y"—18y —12e% = 0

dx{ oy’ oy

2

The extremal path is therefore a solution to the ODE d Z -9y = 6e>
X

AE: 1?-9=0 = A=%3
CF. y.=AeX4+Be X

PS: r=6e= 6y, , part of the C.F.  Therefore we cannot try vy, = ce¥.

Try  yo=cxe¥ = y =c(1+3x)e¥ = yI=c(6+9x)e*>
= Yy -9y, =c(6+9x-9x)e* =6e>* = 6c=6 = c=1
=y, =xe
GS.: y:(A+x)e3X+Be_3X
B.C.: Curve passes through (0,1) = 1=A+B (A)
Curve passes through (l,2e3) = 2e°=(A+1)e*+Be® = 1=A+Be® (B)
(A)-(B) = O:B(l—e‘e) - B=0 = A=1
C.S. y:(l+x)e3X
Therefore the extremal path is

3X

y=(1+x)e

= Return to the index of solutions




	Q1  PDE
	Q2  Newton method
	Q3  stability analysis
	Q4  Fourier series
	Q5  calculus of variations

