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When    P | P |A B B A  

 

1. Introduction  

Many students encountering probability theory for the first time have difficulty distinguishing 

conditional probabilities from joint or unconditional probabilities and they often confuse the 

conditional probabilities  P |A B  and   P |B A .   For a pair of compatible events  A, B whose 

unconditional probabilities are neither 0 nor 1, this note demonstrates two consequences when 

   P | P |A B B A  :      P PB A  and P | P |A B B A       .   The development of these 

consequences also provides some practice in the application of the laws of elementary 

probability.  

  

 

2.    P PB A  

The general multiplication law of probability quickly verifies that  P |A B  and   P |B A  are 

different, except when possible and compatible events  A, B  are equally likely:  

         P P P | P P |AB B A B A B A   (1) 
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If    P PB A  then    P | P |A B B A . 

 

Among the serious consequences of a failure to distinguish between  P |A B  and   P |B A  is 

the now-notorious “prosecutor’s fallacy” [1].   One tragic case of a miscarriage of justice was 

summarised in the Mathematical Association President’s Address of 2003 [2].   In a criminal trial 

involving forensic evidence, if I represents the event that an accused person is innocent and M 

represents the event that a forensic match occurs, implicating the accused in the crime, then it is 

often the case that  P |M I  is tiny (much less than one in a thousand), but the jury needs to 

know  P |I M .   From equation (2) they are connected by 

   
 
 

P
P | P |

P

I
I M M I

M
   (3) 

 P |I M  can be a substantially larger number, enough in some cases for |I M  to be odds on.  

 

Equation (2) shows clearly that if  P A  and  P B  are non-zero and equal to each other, then 

   P | P |A B B A . 

Rearranging equation (2) we have  
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If events A, B are mutually exclusive then    P | P | 0A B B A   and the expression for  P B  in 

equation (4) is indeterminate.      P | P | 0A B B A   in equation (4) leads to    P PB A . 

 

An appeal to symmetry between events A, B when    P | P |A B B A  also suggests that A, B 

should be equally likely, but this symmetry argument fails when the two events are mutually 

exclusive.   The Venn probability diagram of figure 1 provides a simple counterexample. 

  

 
Figure 1:     P | P |A B B A  but    P PB A  

 

 

3. P | P |A B B A        

Now we show that    P | P | 0A B B A   forces P | P |A B B A       , (unless 

   P P 1A B  ).   From the definition of conditional probability (which follows from the 

general multiplication law of probability),  
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Applying the general multiplication law of probability in the numerator,  
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Applying the total probability law to pairs of complementary events, 
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By a similar set of operations,  
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But if     P | P | 0A B B A    then     P PB A   and equations (7) and (8) both reduce to  
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   (9) 
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unless    P P 1A B  , in which case this expression for P |A B 
   and P |B A 

   is 

indeterminate (not surprising, when A , B  are both impossible events). 

 

 

4. Finding  P A  from  P |A B  and P |A B 
   

When    P | P | 0A B B A   and neither A nor B is the universal set, equation (9) leads to an 

expression for  P A  and  P B   in terms of  P |A B  and P |A B 
   only. 
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       1 P P | P 1 P |A B A A B A       

    P | P 1 P | P |B A A B A B A           
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or, equivalently,  
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5. Example   

Suppose that a current passes through a pair of pumping stations that are connected in parallel (as 

in figure 2).   Each station has a 95% chance of operating properly if the other is functioning 

properly.   However, a failure in one station puts more strain on the other station.  The 

probability that either station operates properly when the other station has failed is only 20%.   

Find the unconditional probability for a station to operate properly and find the probability that 

the current will pass through this system. 

 
Figure 2:  System connected in parallel 

 

Solution  

From the information in the question 

   P | P | .95A B B A    and  P | P | .20A B B A         

where A represents the event that pumping station #1 is functioning properly 

and B represents the event that pumping station #2 is functioning properly 

Equation (11)      
.20 20 4

P P
1 .95 .20 25 5

A B    
 
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The probability that a station is functioning is 80%, in the absence of knowledge about the status 

of the other station.   That probability rises to 95% if it is known that the other station is working, 

but falls to 20% if it is known that the other station has failed.   While they are identical, the two 

events A, B  are strongly dependent.  

  

Current will pass through the system if at least one of the stations is functioning. 

The probability that current will pass through this system is  

   P P ~A B A B 
 

   (deMorgan’s law)  

1 P A B        (complementary events)  

1 P P |A B A            (general multiplication law) 

   1 1 P 1 P |A B A          (complementary events)  

4 1 4
1 1 1 1

5 5 25

  
       

  
 

 
21

P 84%
25

A B    

 

A direct approach is to partition the union into its three mutually exclusive and collectively 

exhaustive components: 

       P P only P only P bothA B A B    

 P P PA B A B A B         

But, from the total probability law,    P P PA A B A B     

 

Figure 3:     P P PA B A A B      

   P P PA B A A B       

 P P P |A A B A            (general multiplication law) 

.8 .2 .20 .80 .04 .84       

 

Yet another approach is to use the general addition law of probability,  

       P P P PA B A B A B    

and then the general multiplication law of probability,  

         P P P P P |A B A B A B A    

.8 .8 .8 .95 .8 1.05 .84         
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A tree diagram (figure 4) is a good visual method which illustrates the first two methods above 

for the calculation of  P A B . 

 

 
Figure 4:   Tree diagram for  P A B  

 

There is therefore a probability of 84% that current will pass through this system. 
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