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Students meeting the result  1 lndx x C
x

= +∫   for the first time are often amazed by 

the fact that a function so unlike  x n+1  can “fill the gap” at  n = –1  in the integration of  

xn.   Here we show that  ln x  must fill that gap, by examination of the limit of nx dx∫   

as  1.n →−    Consider the function defined by 
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where  b  is a positive constant. 
 
The function  I (n, b)  has a discontinuity at  n = –1,  but everywhere else  
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  is continuous.     

Evaluate a simple Maclaurin series expansion of  I (n, b)  in  x , with  b = 1 + x : 
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An alternative is to use l’Hôpital’s rule: 
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The discontinuity may therefore be removed by redefining  I (n, b)  to be 
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But  I (n, b)  was also defined to be  ( )
1

,
b

nI n b x dx= ∫ . 

It then follows that 
11

ln as 1
b bnx dx x n → → − ∫   and  ln x  does indeed fill the gap. 

A graph of  ( ) ( )
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  against  x  for three values of  n,  

(n = –1.2, –1 and –0.8), illustrates this limiting behaviour: 
 

 
 

 
I am grateful to an anonymous referee for suggestions that have improved this note and 
for the following extension to this work. 
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This can be used as the basis of a method for estimating natural logarithms on a basic 
calculator, using just the square root key and the three arithmetic keys  –, ×, = : 

( )( )2 1 ln as
aa x x a− → →∞  

For example, to estimate  ln 3 (with a = 5), press ‘3’, then press the square root key five 
times to obtain 

51/2 1/323 3 1.034927767= =  , subtract 1, then double five times to obtain 
1.117688 , which is a mediocre estimate of ln 3 1.098612288=  . 
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Increasing the number of repeated key presses improves the estimate up to a certain 
point, determined by the level of precision to which floating point numbers are stored in 
the calculator.   Entering ‘3’ and pressing the square root key ten times on a good modern 
calculator produces  

101/2 1/10243 3 1.001073439= =  .   Subtract 1, then double ten times 
to obtain 1.099201830 , which is  ln 3  correct to four significant figures.   I still use a 
Casio fx-120 calculator from 1978, which possesses a much lower level of precision.   
Application of this procedure (with  a = 10) on my old calculator produces nearly the 
same estimate, 1.099200512 .    
 
The dependence on the level of precision becomes apparent by a = 20:   From a good 
modern calculator, the estimate of  ln 3  is 1.098612864  (which is correct to eight 
significant figures), whereas the estimate from my Casio fx-120: is 1.096810496 , (which 
is less accurate than the a = 10 case). 
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