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Abstract 
There are many ways to try to model engineering 
phenomenon.  Three well-known modelling categories or 
methods are      (i) the building of physical models, followed 
by laboratory measurements during system operation, (ii) 
via deterministic modelling using analytical solutions of, or 
numerical approximations to, the governing differential 
equations, (iii) via non-deterministic modelling using ‘best-
fit’ equations to mimic the observed processes (without 
seeking a deeper understanding of the underlying 
mechanics).  Numerical solutions themselves represent a 
large number of possible approaches and much is known 
about the magnitude of the errors that may be expected for 
a given method.  All these approaches are interesting and 
useful in their own ways, but it is still a challenge to make 
this material seem interesting to engineering students.  
Today’s engineering professor is also confronted with a 
large array of ever-changing software that purports to ‘skin 
the cat’ of process modelling in new and better ways.  This 
paper describes how the phenomenon of level-pool 
hydrologic routing was used in a civil engineering course as 
a vehicle to introduce students to all of these approaches, 
including a powerful simulation software that writes 
computer-code based on the user’s intuitive understanding 
of the processes being observed. 
 
 
Introduction 

Dalhousie University course CIVL4720 “Civil 
Engineering Computations” was originally conceived as one 
in which various numerical methods would be taught using 
examples specifically from civil engineering.  Except for 

this selectivity it was, prior to the fall of 2000, a fairly 
typical ‘number-crunching’ course.  There was no 
laboratory component.  Our on-going desire is to increase 
the amount of environmental modeling in the course, 
thereby increasing both its usefulness and the level of 
interest experienced by students.  This paper describes an 
experience with teaching modelling using the well-known 
hydrologic phenomenon of level-pool routing as the 
‘pedagogic vehicle’.  The routing phenomenon was 
modelled in this course in five ways: (i) physically, using an 
experimental set-up that was simple and inexpensive to 
build, (ii) numerically, by executing traditional numerical 
schemes in Excel®, (iii) analytically, for part of the problem, 
(iv) statistically, using non-linear transformations and 
ordinary least squares regression (OLS) curve fitting, and 
(v) using an intuitive systems simulation software package 
known as Stella (HPS 2000).  It is believed that this last 
approach represents quite a departure from what civil 
engineering students normally encounter in their 
undergraduate programs. 
 
Method 

The phrase ‘level-pool routing’ in hydrology refers either 
to the manner in which water moves through a pond or 
reservoir, or to one of a number of algorithms that may be 
used to simulate this phenomenon, all mathematically based 
on the simple principle of the conservation of volume.  A 
series of such reservoirs is sometimes referred to as a 
cascade.  A typical outflow sequence for such a cascade is 
shown in Figure 1. 
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Figure 1.  Outflow hydrographs for a cascade of three reservoirs. 

(The first reservoir had no inflow; in this case it drained an imposed initial volume). 
 

It was desired to make the students' modelling experience 
more than just successfully generating graph(s) like Figure 
1.  It was hoped that by making the modelling effort more 
experiential ('hands-on') and by including an element of 
competition, that the level of student interest would be 
increased.  Therefore, in preparation for the fall 2000 
offering of this course a simple cascade of three small 
reservoirs was designed and assembled (see Figure A1 in 
Appendix A).  The outflow from each of these 30 cm 
diameter clear plastic reservoirs, placed in series, was 
controlled by interchangeable sharp-edged circular orifices a 
few mm in diameter.  For the set-up that was used for 
CIVL4720 the top tank (having the largest orifice) drained 
the most quickly and the bottom one (having the smallest 
orifice) the most slowly.   

 
Students used a vernier caliper and a measuring tape to 

obtain “all relevant physical dimensions” of the apparatus, 

such as tank heights, tank diameters, and orifice diameters.  
Naturally, some students returned to obtain measurements 
that they later realized were needed in order to do the 
modelling.  The procedure was as follows: water coloured 
with fluorescent green dye drained through a series of tanks 
and the students took pictures at regular intervals of the state 
of the system while the water is making its way though it.  
This was initiated by having one student pull the plug in the 
top tank and start a clock at the same moment.  Another 
student took a sequence of colour photographs with a digital 
camera, capturing a number of water levels in each tank.  
Because there was a clock in the view of the camera, the 
students were able to obtain the time that had elapsed for 
any given set of water levels.  These images were emailed to 
the students and they used the standard orifice equation to 
convert the water levels, as measured from the images, into 
outflows.  In this way they compiled all the data associated 
with the complete passage of the water that was initially 
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only in the top tank.  This system for physically modelling 
hydrologic routing was much less expensive and complex 
than a data acquisition system with three water level 
pressure transducers connected to a Lab-View equipped PC.   

Basic Theory   
The phenomenon associated with how the water runs in, 

and out of, any given tank is governed by the following 
equation, founded on the conservation of volume: 

dt
dsQQ outin =−                        [1] 

where ‘s’ is the volume in any given reservoir.  Qin is the 
hydrograph 'supplied' by the next-most upstream reservoir.  
For orifice outlets Qout is controlled by: 

gh2ACQ 0D=                         [2] 

Due to a sabbatical taken by the regular hydrology 
professor, it turned out that the students at this point in their 
program had no working understanding of eqn [1] nor did 
they have any computational ability to perform routing.  
Basic knowledge about routing was therefore taught in this 
course, instead of in the hydrology course.  However, the 
students were deliberately not given equation [2] on the 
grounds that it had been previously covered in their 
introductory Fluid Mechanics course.  A surprising number 
of them owned no fluid mechanics textbook in which they 
might quickly find eqn [2], and virtually none of them had 
any idea what the equation governing an orifice might look 
like.  They struggled through this difficulties on their own, 
though not happily.   

Having the basic theory and their data-set in hand, the 
students then sought to computationally reproduce (model) 
what they had observed, in four ways:  (i) Using the exact 
analytical solution that describes the drainage of the first 
reservoir.  (No analytical solution exist for the hydrographs 
observable in the tanks beyond the first one), (ii) Using two 
numerical solutions to equations [1] and [2], executed in 
MS-Excel®, (iii) Using a modern drag-and-drop icon-based 
simulation package known as Stella®, and (iv) Statistically, 
via non-linear OLS curve-fitting.  The first three methods 
were presented in the course as 'Deterministic Modelling', 
the last as an example of 'Non-deterministic Modelling'.  
These approaches will now be elaborated upon: 
 
Modelling Approaches 

(i) Physical Modelling 
This component was described in part under 'Method' 

(above).  Low heads corrections to orifice behaviour were 
not required of the students, although a couple of the more 
perspicacious ones did ask if they should include this effect.  
A great deal is known about the physical modelling of  

hydraulic phenomenon occurring in open channel (rivers) 
and over structures (such as spillways), usually based on 
Froude scaling laws.  It does not appear that much work has 
been done on inferring the behaviour real reservoirs using 
model reservoirs.  This may be investigated at a future date, 
especially with regard to the trapping of model sediment.  
At this stage of course development the students were not 
required to make any such inferences; the outcomes of this 
laboratory work were taken and used at face value. 
(ii) Numerical Modelling 

There are many well-known numerical schemes for 
solving both ordinary differential equations (Liengme 1997, 
Orvis 1987) and partial differential equations (Hansen 1992, 
Hansen and Droste 1990, Olsthoorn 1985, Townsend et al 
1991) that can be executed very efficiently in spreadsheet 
programs such as Excel® (see also Wolff 1995).  In this case 
the method of Euler as well as Heun’s improvement upon it 
(Chapra and Canale 1988) were applied to the following 
non-linear first-order ordinary differential equation (for the 
hydrologic theory see also Bedient and Huber 1992): 

)t,h(
A

phQ
dt
dh

R

q
in f==                            [3a] 

n
R mh=A                            [3b] 

where: 
h = depth above the orifice (L), 
Qin = inflow to the tank (L3/T), 
p and q = empirical parameters governing the outflow  

hydraulic (an orifice in this case, so q=0.5), 
AR = surface area of the reservoir, single-valued in this 

case (L2), 
m and n = empirical parameters relating AR to h, equal 

to unity in this case. 
 

These algorithms can be efficiently executed in the tabular 
form for which spreadsheets are famous (see Table 1a and 
1b).  Modern desktop computer CPUs are so fast that there 
now seems to be little interest in the relative efficiency of 
the algorithms used to solve many (but not all) civil 
engineering problems.  In addition, what is more important 
in an educational setting is that (i) the students implement 
the relevant mathematics personally and ‘pseudo-manually’ 
(not using black-box software), and that (ii) students are 
able to implement the mathematics efficiently.  It seems that 
an excessive amount of time can be spent debugging 
conventional code, necessitating teaching fewer numerical 
methods and giving fewer problems.  Aspect (ii) is an 
important consideration when teaching engineering students 
because their academic load is quite heavy, and especially 
so if a variety of techniques are being taught within a single 
course in numerical methods. 
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Table 1a.  Table for executing level-pool reservoir routing, using the Euler method to solve equation [3]. 

 
Time 
(sec) 

Inflow 
Qin 

(cm3/s) 

Head in 
tank 1 

(m) 

Outlow 
Qout 

(cm3/s) 

 
Area AR 
(cm2) 

 
Slope 
f(h, t) 

 
h(t+Δt) 

(cm) 

0 0 33.020 122.918 294.6 -0.41723 32.186 

2 0.00 32.186 121.355 294.6 -0.41193 31.362 

etc  31.362    etc 

 
 

Table 1b.  Tabular execution of level-pool reservoir routing, using the Euler-Heun method to solve equation [3]. 
 

 
Time 
(sec) 

 
Inflow 

Qin 
(cm3/s) 

Head 
in tank 

1 
(cm) 

Outlow 
Qout 

(cm3/s) 

Area 
AR 

(cm2) 

1st 

slope 
f(h, t) 

 
Revised

Qout  

 
Revised

AR  

2nd  
slope 
f(h, t) 

average 
f  
 

 
 

h(t+Δt) 

0 0 32.020 122.918 294.6 -0.41723 121.355 294.6 0.41193 0.41458 32.191 

2 0.00 32.191 121.365 294.6 -0.41196 119.801 294.6 0.40665 0.40931 31.372 

etc  31.372        etc 

The outcome of the above tables (i.e. the outflow hydrographs) for tank one becomes the inflow to tank two, etc. 
 

(iii) Analytical Solution (1st tank) 
The closed form solution for the volume that has exited 

the top tank after time t is (Appendix C): 

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
β

−=∀
2
thtg2AC

2

00D           [4] 

Volumes computed using eqn [4] could therefore be 
compared with the volumes for tank 1 measured in the 
laboratory.  This comparison helped the students realize the 
limitations on the accuracy of their physical measurements. 
 
(iv) Statistically 

An important component of CIVL4720 is the use of OLS 
curve fitting and non-linear transformations to describe 
processes non-deterministically.  It can be shown that, for 
the top tank, the head at any time 't' is (see Appendix C): 

2

12
thh ⎥
⎦

⎤
⎢
⎣

⎡
β

−=                           [5a] 

where h1 is the initial h (imposed, about 0.32 m in this case).  
The students needed to realize that they should regress 

2h  versus time t.  The parameter β  contained quantities 
that the students measured with calipers or a tape measure 
(see Appendix C): 

g2AC
A2

0D

R=β                              [5b] 

 
so that the regression result, arising from the hydraulic 
behaviour (about 30 data points collected over 20 minutes), 
could be compared to an independent estimate of β  found 
using actual length measurements. 
 
(v) Using Systems Simulation Software 
(Stella®) 

Stella® is a systems-simulation software package that can 
be adapted to almost any time-dependent process (HPS 
2000).  The examples that come with this software include 
such things as the manufacture/distribution of beverages, the  

 66 



 

ecology of a deer population, and the waiting time of 
patients going to a hospital Emergency Room.  The package 
is equally comfortable with, and equally easy-to-use, 
whether the movement of money or of water is being 
studied.  The examples provided by HPS show a highly 
non-trivial level of detail with respect to the sub-processes 
considered.  The software is easy to learn and is directed at 
documenting and formalizing one's understanding of 
processes and sub-process interaction (the company motto is 
"Because understanding cannot be memorized").  Stella® 
uses four main icons to describe a system: (i) a stock-taker 
(a box-shaped icon representing the concept of inventory) in 
which 'stuff' may be accumulated or decremented, (ii) a 
convertor, (a circle icon, perhaps representing a brain) in 
which governing formula and functions can be invoked, (iii) 
a flow controller (a valve-on-pipe icon), which usually 
connects the stock icons, and (iv) a conveyor (line or curve 
with arrow-head) which can be thought of as a telephone 
line that either informs conveyors and flow-controllers of 
the present status of various quantities,  or sends instructions 
to these icons regarding how to control releases (often via 
formula outcomes executed in convertors). 

The icons are dragged onto the screen and connected 
intuitively.  Equations that govern the details of the 
processes are added later.  The package has utilities for 
plotting and recording outcomes that are invoked in the 
same manner.  Figure 2 shows how the first author set up 
the routing problem in Stella. 
 
Outcomes 

We were reasonably pleased with the students' reports, 
especially considering that this was the first time that this 
experiment had been attempted.  The requirements as to 
what the report had to contain were stated in too general a 
fashion.  Instructions to “compare outcomes” were generally 
not well-executed by the students.  In future they will be 
told exactly what graphs to prepare. 

It was assumed that the general idea of modelling a 
physically-observable phenomenon using theories, as 
compared to approximations to theories, was already 
understood.  This was apparently not uniformly the case.  
Many students seemed to treat all of the outcomes, 
including the physical modelling effort, as having 
completely equal validity and significance, in that many 
students did not seem to treat the experimental data as the 
basis for all other comparisons.  They were also weak in 
their appreciation of (i) the role of errors in their physical 
measurements on the outcomes, and of (ii) the idea that 
parameter estimates arising from modelling efforts might 
not be perfect, and might in fact be honed or calibrated in 
order to improve the agreement between computed and 
observed outcomes. 

Appendix A presents a statement of how the initial data 
collection and processing was to be executed.   A progress 
report was required shortly afterwards so as to 'spread out' 
the work in a more explicit manner (students being 
notoriously poor at beginning the analysis of fresh data in a 
timely manner).  Appendix B is the statement of what was 
finally required of each group – a semi-formal report in 
which all the methods used to model the routing 
phenomenon were to be compared.  Appendix C is a 
mathematical derivation that was given to the students to aid 
in their understanding of the behaviour of top tank in the 
reservoir cascade. 

The students found the quality of the still images to be 
adequate, but only just.  Perhaps a video sequence taken at 
close-range would provide adequate image quality and also 
permit reading of times from the clock and water levels 
from the tanks at any desired interval. 

 
Conclusions 

Hydrologic routing was successfully used as a vehicle to 
introduce civil engineering students to the idea that there are 
many ways to 'simulate' a given phenomenon.  Data 
collection of time-varying water levels with a digital camera 
was reasonably successful, but might in future be simplified 
by creating a digital video that could be mounted on the 
WebCT site for the course.  There were some lighting 
problems and the student groups were somewhat large, but 
these problems will be remedied in the next offering of the 
course.   Many of the students were very intrigued by the 
possibilities of the Stella® systems simulation software.  The 
new experiment was a qualified success and will be used 
again in the fall of 2001. 
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Figure 2.  'Template' for the reservoir cascade model created using Stella® systems simulation software. 

(The template becomes animated during simulation, with the tanks filling and emptying.) 
 
 

 

 



 

 
 
 
 

APPENDIX A 
LABORATORY ASSIGNMENT: 

INITIAL DATA COLLECTION FROM PHYSICAL MODEL TEST. 
INTRODUCTION 
Select a group leader – he/she will be the recipient of the jpg images, by email.  The TA will record this person’s name and 

the names of the people in your group.  In this experiment you will record the behaviour of physical model of a reservoir 

cascade.  In this case it will be a stack of three tanks, set up above one another as a cascade of three, placed in series.  These 

reservoirs are cylindrical and each has an orifice in the bottom (centre). 

 

 
Figure A1.  Ensure that the above apparatus is level, so 

that the tank walls are vertical. 
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PROCEDURE: 

1. Use a black dry-erase marker to write the name of your group leader and the date on the card at the top of the apparatus. 

2. Gently ‘screw’ the rubber plug into the hole in the (empty) top reservoir. 

3. Temporarily move the clock away from the stand. 

4. Use the hose to fill the top reservoir nearly to the top.  Use the tap (hand-valve) in the SE corner of the lab to control the 

fill-up. 

5. Put the clock back on the stand, plug it in, and zero it.  Turn on the light and hold it near (but not in front of) the clock.  

The light is important in illuminating the clock face, so as to be clearly seen in the photos (ie. you will use a series of 

jpg’s to read off the times so the clock face needs to be well-lit). 

6. Get photographer in position.  You need a photo at t=0 -.  Measure the initial level in the top tank. 

7. Have one person must simultaneously pull the plug and flick the start switch on the clock. 

8. Take a sequence of pictures to document what happens with respect to water level variation in the three containers, 

through time.  Note any unusual behaviour. 

 

BEFORE YOU LEAVE: 

• Make sure you understand how to read the clock-face.  Note that the major divisions are not minutes and the smallest 

divisions are not seconds. 

• Measure all relevant physical dimensions that, in your opinion, affect the behaviour of the cascade.  (using a ruler, 

calipers, etc.)  This may necessitate taking the cascade apart.  There is a small crescent wrench nearby to enable you to 

take the top nuts off.  Do not attempt to re-assemble the cascade.  Please do not drop the acrylic tanks! 

INITIAL POST-PROCESSING OF THE DATA: 

i) Find the governing equation for an orifice in a fluid mechanics or hydraulic structures textbook (stated as flow, Q, as a 
function of depth over the centre of the hole, h).  These books are in the TA347 and TC5 sections of our library.  (This 
law was discovered by Evangelista Torricelli circa 1640.)  Write down the formal reference for the book(s) that you use 
in academic citation format.  Study the part of the text associated with the governing equation and write down all of the 
assumptions that are built into it.  Note: the equation can be derived by applying Bernoulli’s eqn between two points: the 
water level at h and the jet which emerges at atmospheric pressure at velocity V.  This result will not, however, show the 
empirically-determined orifice coefficient CD. 

ii) The TA will email your group leader the jpg images.  Use a paper printout of these jpg’s to obtain a series of water levels 
(heads) and times (by reading the clock in each view).  Separate these data-sets by tank.  You jpg’s can be viewed by MS 
Photo-editor (installable from Win98) or Windows Paint.  Increasing the brightness and contrast (along with the percent 
magnification) may assist you in reading the times from the clock. 

iii) Convert the heads to outflows using the orifice equation from step (i). 

iv) Plot the three outflow hydrographs (one for each tank) on the same piece of graph paper.  Make the ordinate flow in 
cm3/s and the abscissa time in minutes. 

v) Submit all of the above by Friday of the same week to the TA, for a preliminary evaluation. 

 

© D. Hansen, Dalhousie University 
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APPENDIX B 
 

CIVL4720  Civil Engineering Computations  Part II 
 

Group Assignment1:  COMPARISON OF METHODS FOR MODELLING THE ROUTING PHENOMENON. 
 

Analysis and Report Preparation 
 

1.0  Background and Theory. 
Document all the data collected in the lab according to the guidelines provided re: presentation of 
graphs, equations, tables, and references.  Also, document all relevant characteristics of the physical 
model.  State all equations that are relevant to the physics of this problem, along with any limitations 
or assumptions.  State the fundamental differential equation that governs level-pool routing.  (One 
person.) 

 
2.0  Deterministic Approach using Modern Simulation Software. 

Use Stella to model the temporal variation in volume, head, and outflow for the various 
‘components’ in the 3-tank cascade.  Use your best estimates of the various physical characteristics 
of the cascade (diameters, circular areas, discharge coefficients) to reproduce the behaviour that you 
observed in the lab.  Present graphical comparisons and discuss.  (Two people.) 

 
3.0  Conventional Deterministic Approach. 

a)  Present the mathematical basis for the Euler-Heun Method, using nomenclature appropriate to 
this particular problem.  Use this numerical method to simulate the observed behaviour of the 
cascade (this can be done efficiently in Excel).  Present graphical comparisons and discuss. 
(One person.) 
b)  Compare outcomes #2 and #3a, together with a presentation of the effect of changing Δt. 
     (One person.) 

 
4.0  Non-deterministic Approach (Curve-fitting via Statistical Methods). 

Use appropriate transformations (where necessary) to obtain OLS-based ‘best-fit’ equations that 
describe your experimental data.  (In some cases you might want to try to minimize ∑ε 2

i
 without the 

use of a transformation.)  Compare constants having physical significance and discuss your results.  
(One person.) 

 
© D. Hansen, Dalhousie University 

 
 

                                                           
1 The names of the people in the groups who submit the first, second, and third-best reports will be published.  The name(s)       

of the person(s) covering each section or doing a given set of tasks must be listed in an appendix.  There will be one mark 
per report unless it is clear that one individual did not properly share the work-load. 
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Names: _____________, ________________, _______________, _______________, ______________ 
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APPENDIX C 

BEHAVIOUR OF TOP TANK IN THE RESERVOIR CASCADE. 

 
Find an expression for the time it takes to drain a cylindrical tank via an orifice located at depth h: 

hAtQ Rδ−=δ                                                                       [C-1]                            
Solving for  and integrating between the limits h = h1 at t = 0 and h = h2 at any subsequent time t: tδ

      dh
Q

A
dt

2

1

h

h

R
t

0
∫∫ −=               [C-2] 

gh2ACQ 0D=             [C-3] 
 

by substitution and integration:    ( )21
0D

R hh
g2AC

A2
t −=            [C-4] 

 
or:              ( )21 hht −β=             [C-5] 

where h1 is the initial head and:                              
g2AC

A2

0D

R=β                                                                

From eqn [C-5] this means that:     
2

12
thh ⎥
⎦

⎤
⎢
⎣

⎡
β

−=               [C-6] 

 

Using eqn [C-6] in equation [C-3] gives:  ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
β

−=
thg2ACQ 10D            [C-7]                       

Obviously:            ∫=∀ dtQ                [C-8] 

From eqn [C-7]:        ∫ ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
β

−=∀
2

1

t

t 10D dtthg2AC            [C-9] 

 

For t1 = 0 and h1 = ho, and calling t2 't':  ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
β

−=∀
2
thtg2AC

2

00D            [C-10] 
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