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What?
Molecular Communication

• How do biological systems share information?
• Can synthetic networks use natural communication systems?
• What are the practical communication limits?

Image: US Centers for Disease Control and Prevention http://www.cdc.gov/tb/education/corecurr/pdf/chapter2.pdf
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Why?

Edited Image From: Nakano, Eckford, Haraguchi, Molecular Communication. Cambridge University Press, 2013.
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How?

Diffusion is motion of a molecule colliding with other molecules

• No external energy or infrastructure required
• Very fast over “short” distances (≤ 1µm)
• Used by many cellular processes

Image: Nakano, Eckford, Haraguchi, Molecular Communication. Cambridge University Press, 2013.
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Example
Neuromuscular Junction

30 nm
Presynaptic

Cleft
(Neuron)

Postsynaptic
Cleft

(Muscle)

• Connect motor neuron to
muscle fiber

• Molecules released (∼ 104)
• Reception leads to muscle

contraction
• Up to ∼ 50 times per second
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Channel Modeling

• Fluid

• Receiver (RX)
• Transmitter

(TX)
• U sources
• A molecules
• Diffusion D
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Channel Modeling
Simplified Receiver (Uniform Concentration)

3D Point Receiver Observation (Point TX)

NRX (t) =
NVRX

(4πDt)3/2 exp
(
− d2

4Dt

)

3D Spherical Receiver Observation (Point TX)

NRX (t) =
N
2

[
erf
(

rRX − d
2
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Dt

)
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)]
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d
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π
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(
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)]

Noel, Cheung, Schober, Proc. IEEE ICC MoNaCom, Jun. 2013.
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Channel Modeling
Simplified Transmitter (Point Source)

1D Receiver Observation (Point TX)
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1D Receiver Observation (Volume TX)
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Noel, Makrakis, Hafid, Proc. CSIT BSC, Jun. 2016.
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Channel Modeling
Accuracy of Point-to-Point Model

Dimensionless Time
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Noel, Cheung, Schober, Proc. IEEE ICC MoNaCom, Jun. 2013.

Noel, Makrakis, Hafid, Proc. CSIT BSC, Jun. 2016.
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Channel Modeling
Observation Independence
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Noel, Cheung, Schober, IEEE Trans. NanoBiosci., Sept. 2014.

Channels and RXers for Diffusive MC Noel 13/40



Channel Modeling
Changing the Channel

A E EA EAP

k1

k-1

k2

Noel, Cheung, Schober, IEEE Trans. NanoBiosci., Mar. 2014.
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Channel Modeling
Uniform Flow in Any Direction
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Channel Modeling
Uniform Flow in Any Direction
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Channel Modeling
Parameter Estimation
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Can we estimate underlying
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• Take M samples of
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• Cramer Rao Lower
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• Bound increases as
fewer parameters known

• ML is asymptotically
efficient

Noel, Cheung, Schober, IEEE Trans. Mol. Biol. Multi-Scale Commun., Mar. 2015.
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Channel Modeling
Reversible Adsorption

Molecules adhere to RX surface and can detach
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0 0.150.05 0.1
Time (s) 

0.2
0

1

N
et

 N
um

be
r 

of
 A

ds
or

be
d 

M
ol

ec
ul

es
 d

ur
in

g 
E

ac
h 

S
am

pl
in

g 
T

im
e

2

3

4

5

6

7

8

9

10

k -1= 5

20
10

Sim.
 Anal.

Deng, Noel, Elkashlan, Nallanathan, Cheung, to appear in IEEE Trans. Mol. Biol. Multi-Scale Commun., 2016.
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Communications Analysis

RX

10110 ...

How to design communication system?
• Different ways to modulate (time of release, # of molecules, type

of molecules)
• Choose impulsive binary ON/OFF keying
• Detect using multiple RX samples per symbol interval

Channels and RXers for Diffusive MC Noel 19/40



Communications Analysis
Receiver Design

• Energy detector and matched
filter with constant decision
thresholds

• Maximum Likelihood detector
based on Viterbi algorithm

• We can approach ML
performance with molecule
degradation and/or strong flow
(not shown)
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Noel, Cheung, Schober, IEEE Trans. NanoBiosci., Sep. 2014.
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Communications Analysis
Relaying

• Motivation: Reach further destinations faster
• Decode-and-forward, amplify-and-forward
• Various schemes for re-using molecule types in different hops
• Identified self-interference (SI) and backward ISI (BI)

Ahmadzadeh, Noel, Schober, IEEE Trans. Mol. Biol. Multi-Scale Commun., Jun. 2015.

Ahmadzadeh, Noel, Burkovski, Schober, Proc. IEEE GLOBECOM, Dec. 2015.
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Communications Analysis
Relaying Results

• Optimized decision
threshold or number of
molecules

• Adaptive relay adjusts
decision threshold

• There is an optimal
number of relays
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Ahmadzadeh, Noel, Schober, IEEE Trans. Mol. Biol. Multi-Scale Commun., Jun. 2015.
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Multiuser Communication
Cooperative Communication

ξ
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• Limited work about MC devices actually “cooperating”
• Derived performance in symmetric and asymmetric networks
• Convex optimization of thresholds (in preparation)

Fang, Noel, Yang, Eckford, Kennedy, to be presented at IEEE GLOBECOM, Dec. 2016.

Channels and RXers for Diffusive MC Noel 24/40



Multiuser Communication
Large-Scale Systems

• Consider “large” number of
TXs defined by density

• What is capability to
communicate with closest TX?

• Derived channel response of
closest vs remaining TXs
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Deng, Noel, Guo, Nallanathan, Elkashlan, to be presented at IEEE GLOBECOM, Dec. 2016.
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Simulator Development
Motivate Sandbox

• Reaction-diffusion solvers
• Physical-chemistry community
• Generic “sandbox” tools with flexible accuracy
• Not designed for communications (channel statistics, data

modulation)

• Molecular communication simulators
• Communications engineering community
• Designed for communications research
• Constrained environmental design options

• Need: A “sandbox” simulator for communications research in
reaction-diffusion systems
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Simulator Development
AcCoRD

AcCoRD (Actor-based Communication via Reaction-Diffusion)
• Flexible environmental design (accuracy vs efficiency)
• Generate “many” independent realizations
• Release molecules based on modulated data
• Output local molecule counts or specific locations
Noel, Cheung, Schober, Makrakis, Hafid, in preparation, 2016.
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Finding Common Ground
Active vs Passive

Passive RX - No affect on molecule propagation
• Easier to simulate
• Easier to analyze
• Some biological justification
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Finding Common Ground
Active vs Passive

Passive RX - No affect on molecule propagation
• Easier to simulate
• Easier to analyze
• Some biological justification

Active RX - Model chemical detection of molecules
• More realistic
• Harder to simulate
• Less convenient analysis
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Finding Common Ground
Compare 3D Impulse Responses

Passive RX (Sampling)

NRX (t) |PA =
NVRX

(4πDt)3/2 exp
(
− d2

4Dt

)

Absorbing RX (Accumulating)

NRX (t) |AB =
NrRX

d
erfc

(
d − rRX√

4Dt

)
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Finding Common Ground
Compare 3D Impulse Responses

Fundamentally different RX models ... can we unify them?

Absorbing Signal ?
= S(Passive Signal)

Idea to Unify Models
Compare RX models such that they are either both accumulating or
both sampling instantaneous behavior

Why should we bother?
• Unify literature that has chosen one RX over the other
• Selection of RX model is less critical
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Finding Common Ground
Sample Transform

Integrate passive RX signal to get energy detector

ED (t) |PA =
NVRX

4πDd
erfc

(
d√
4Dt

)

Use approximation of error function to separate terms inside erfc

erfc (x) ≈ exp
(
−16

23
x2 − 2√

π
x
)

Write absorbing signal as function of passive energy detector

NRX (t) |AB ≈ 3DA(t)
r2
RX

ED (t) |PA

where
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Finding Common Ground
Results

Consider signal of 3D absorbing
RX

• Analytical transform no less
accurate than simulation

• Can also transform passive
simulations

• Similar results with passive
RX and in 1D

Time [s]
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Simulation via Transform

Noel, Deng, Makrakis, Hafid, to be presented at IEEE GLOBECOM, Dec. 2016.
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Where We’re Going

General Directions of MC Research:
1 Improving physical and simulation models
2 Obtaining experimental data

AcCoRD simulator is in on-going development and publicly available
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Expanding Physical Model

x
TX {−d, 0, 0}

y

z
v‖

v⊥
v

RX

VRX

1
2

- A molecule
Source u = 2

Source u = 3
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Oscillating Laminar Flow

System Boundary
Motion of 

Fluid Layers

Solvent in laminar flow moves as sliding layers with different velocities
• Small cross-sections lead to laminar flow
• E.g., small blood vessels
• Blood flow oscillates
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Final Words

• Molecular communication is a promising interdisciplinary field

• Interesting variations on “traditional” communications analysis
techniques

• Inspiration between biology and engineering is bidirectional
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The End
That’s All, Folks

Thanks for your time!
Papers: adamnoel.ca

Simulator code: github.com/adamjgnoel/accord
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