Simulation Methods for Molecular Communication

Adam Noel

School of Engineering University of Warwick

4th Molecular Communications Workshop Linz, Austria 17 April, 2019

Learning Objectives

- Introduce molecular communication (MC)
- Understand importance of MC simulations
- Understand the different scales of MC simulation
- Compare different simulation platforms
- Use existing software tools (particularly AcCoRD)

1 Overview of Molecular Communication

2 Introduction to Physical Chemistry Simulations

3 Existing Software Tools

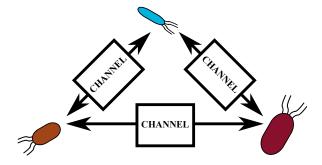
Generic Biophysical Simulators Molecular Communication Software

Software Demonstrations MUCIN AcCoRD

6 Conclusions

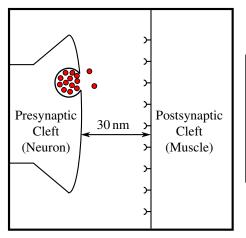
1 Overview of Molecular Communication

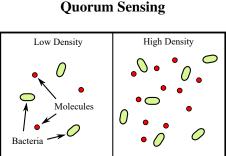
O Introduction to Physical Chemistry Simulations


B Existing Software Tools

Generic Biophysical Simulators Molecular Communication Software

Software Demonstrations MUCIN AcCoRD

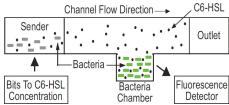

6 Conclusions


Re-Conceptualizing Communication Networks

Examples of Natural Molecular Communication

Neuromuscular Junction

Bacteria estimate population density


Neurons control muscle contraction

Molecular Communication Experiments

Tabletop Signaling¹

Using Bacteria as Transceivers²

¹Farsad, Guo, Eckford, Proc. IEEE INFOCOM Workshops, Apr. 2014

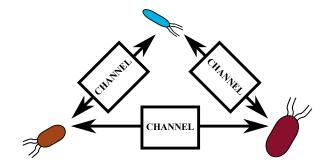
²Krishnaswamy et al., Proc. IEEE ICC, Jun. 2013

Potential Applications for Molecular Communication

Drug delivery

In vivo diagnostics

Lab-on-a-chip


Chemical reactors

Pollution monitoring

Simulation Methods for Mol Comm

Can We Directly Apply Communications Tools?

1 Nodes may be simple (as computational devices)

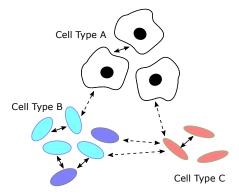
2 Molecules are physically sent (channels are very different)

1 Overview of Molecular Communication

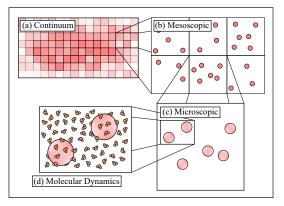
2 Introduction to Physical Chemistry Simulations

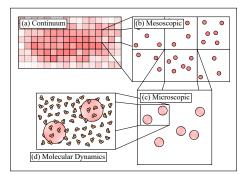
3 Existing Software Tools

Generic Biophysical Simulators Molecular Communication Software


Software Demonstrations MUCIN AcCoRD

6 Conclusions


Why Simulate MC Systems?


Generic reasons for simulation:

- Test assumptions
- Verify expected behavior
 - E.g., Channel response, BER
- Specifically for MC:
 - Channels can be very complex
 - Physical space
 - Many phenomena
 - Understand unfamiliar environments
 - We can control/design the channel

Scales of Molecular Simulations

a Continuum

- Solves PDEs over grid
- Need "very large" populations

b Mesoscopic

- Subvolumes have uniform populations
- Track changes in composition
- c Microscopic
 - Model individual molecules
 - Solvent is a continuum
- d Molecular Dynamics
 - Model ALL molecules
 - Handle collisions and intermolecular forces

1 Overview of Molecular Communication

Introduction to Physical Chemistry Simulations

3 Existing Software Tools

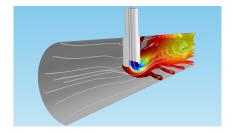
Generic Biophysical Simulators Molecular Communication Software

O Software Demonstrations MUCIN AcCoRD

6 Conclusions

Generic Simulators - Existing platforms from physical chemistry

Advantages:


- Advanced "sandbox" tools
- Open source and commercial platforms
- Options for all physical scales
- Many are maturely developed

Disadvantages (for molecular communication):

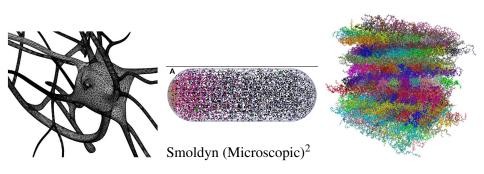
- Not designed for data transmission
- Not designed for channel statistics
- Not always spatially tunable

Popular Generic Simulators

Sample Commercial Platforms

COMSOL Multiphysics (Continuum)¹

ANSYS (Continuum)²


Images: 1 https://uk.comsol.com/multiphysics/what-is-mass-transfer

²https://www.ansys.com/products/fluids

Simulation Methods for Mol Comm

Popular Generic Simulators

Sample Open Source Platforms

URDME (Mesoscopic)¹

LAMMPS (Mol. Dynamics)³

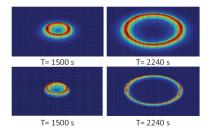
³https://lammps.sandia.gov/prepost.html

Simulation Methods for Mol Comm

Images: ¹https://doi.org/10.1186/1752-0509-6-76, ²https://doi.org/10.1371/journal.pcbi.1000705,

Molecular Communication Simulators

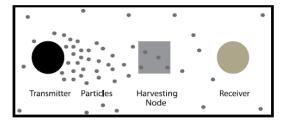
Mol Comm Simulators - Developed within MC research community


Advantages:

- Designed for data transmission
- Designed for channel statistics
- Free if available

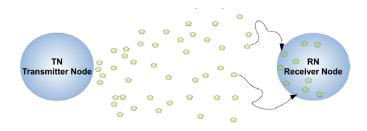
Disadvantages:

- Most are not generic solvers
 - Implement specific environments
- No options for all scales
 - Development focused on microscopic; some mesoscopic
- Not as maturely developed
- Not all readily accessible


Attractant concentration (top) and bacteria density (bottom)

- Written in java
- Simulate interactions between mobile bacteria
- Multi-scale mesoscopic reaction-diffusion
- No longer in development

Image: https://doi.org/10.1109/JSAC.2013.SUP2.12130019


N3Sim

- Written in java
- Simulate within a square or unbounded 3D
- Microscopic diffusion
- Model collisions between diffusing molecules
- Receivers can be transparent or perfectly absorbing
- Detailed user guide and instructions available

Image: https://doi.org/10.1016/j.simpat.2013.11.004 Software: http://www.n3cat.upc.edu/n3sim

MUCIN MolecUlar CommunicatIoN

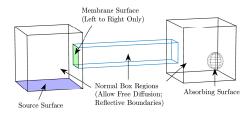

- Entirely in MATLAB; available on File Exchange
- Easy to pick up and modify
- Includes microscopic and Monte Carlo simulations
 - Monte Carlo generates simulations from known channel statistics

Image: https://doi.org/10.1016/j.simpat.2014.09.002

Software: https://uk.mathworks.com/matlabcentral/fileexchange/46066-molecular-communication-mucin-simulator

AcCoRD

Actor-based Communication via Reaction-Diffusion

- Written in C with utilities in MATLAB
- "Sandbox" environment design with microscopic/mesoscopic hybrid
- Details include: reactions, flow, surfaces, data modulation
- MATLAB utilities for videos and plots
- Public website with user manual
- On-going development (15 releases; most recently yesterday)

Image: http://dx.doi.org/10.1016/j.nancom.2017.02.002

Software: www.warwick.ac.uk/adamnoel/software/accord/

BiNS2 (Biological Nanoscale Simulator)

- Developed in java
- Flowing cylindrical environments
- Microscopic reaction-diffusion
- Run time visualization
- On-going development

nanoNS3

- Implemented on top of ns-3
- Continuum simulations of bacteria signaling

BiNS2: http://conan.diei.unipg.it/lab/index.php/product/biological-nanoscale-simulator-bins2

nanoNS3: https://doi.org/10.1145/2967446.2967464

1 Overview of Molecular Communication

2 Introduction to Physical Chemistry Simulations

B Existing Software Tools

Generic Biophysical Simulators Molecular Communication Software

Software Demonstrations MUCIN AcCoRD

6 Conclusions

We will go through basic usage of two simulation tools:

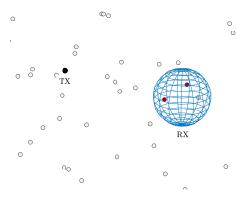
- 1 MUCIN because of ubiquity of MATLAB
- 2 AcCoRD because of flexibility and resources available
 - And because the developer is presenting!

MUCIN Demo

- 1 Modify and run sample configuration
- **2** View simulation output

Image: https://doi.org/10.1016/j.simpat.2014.09.002

Live MUCIN Demo


Advantages for MUCIN:

- Having in MATLAB makes it easy to use and modify
- Code is publicly available on MATLAB File Exchange
 - Updated multiple times from 2014-2016
- Good for simple simulations

AcCoRD Demo Summary:

- 1 Quick End-to-End Demonstration
- 2 Installation and Manual
- **3 BREAK**
- 4 Preparing a Simulation
- **6** Running Simulations
- 6 Simulation Post-Processing
- 7 Extra Demo Example
- 8 Online Resources

AcCoRD Demo Part 1

Part 1: Point to Absorbing Receiver

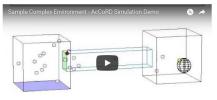
- View environment in MATLAB
- 2 Run Simulation
- Over the second seco
- Import in MATLAB
- S Draw a plot and make a video

Aside: we're using a new algorithm to simulate spherical absorption.

Algorithm: Wang, Noel, and Yang, IEEE Transactions on NanoBioscience, to appear.

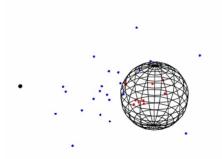
Image: http://dx.doi.org/10.1016/j.nancom.2017.02.002

AcCoRD Demo Part 2


Part 2: Installation and User Manual

www.warwick.ac.uk/adamnoel/software/accord/

① A https://warwick.ac.uk/fac/sci/eng/staff/ajgn/software/accord/	🗉 🚥 🖾 🗘 🧟 Search
≡ School of Engineering	
Undergraduate study Postgraduate study Degree Apprenticeships Research Peopl	e About Staff Intranets 🖴
Dr Adam Noel Software AcCoRD Simulator	
Download AcCoRD How to Use AcCoRD AcCoRD Examples AcCoRD Publications	

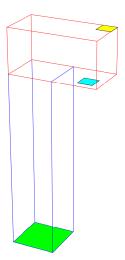

AcCoRD Simulator (Actor-based Communication via Reaction-Diffusion)

This is the public homepage for AcCoRD (Actor-based Communication via Reaction-Diffusion), AcCoRD is a molecular communication simulator and designed as a generic reaction-diffusion solver for flexible system configuration. Actors are placed as sources (i.e., transmitters) or observers (i.e., receivers) of molecules. Environments can be defined with a combination of microscopic and mesoscopic regions. Here are some sample videos generated from AcCoRD output:

- Pre-compiled for Windows, Linux
 - Just unzip directory to desired folder
- Source code also available
- User manual included with download

Part 3: BREAK

Parts 4-6: Data from Point to Passive Receiver with Flow, Degradation


- 1 Part 4: Preparing Simulation
 - Configuration; Viewing
- **2** Part 5: Running Simulation
 - Execution; Clusters; Output
- **3** Part 6: Post-Processing
 - MATLAB; Plots; Videos

- Configuration files are in "config" folder
 - JSON format; best to copy and modify existing file
 - User manual has sample configuration file components
- Can use "accordEmptyEnvironmentQuick" MATLAB function to plot

- Call "accord_win.exe" from Windows command line, followed by configuration filename and seed number
- Realizations can be combined from multiple runs that used different random number seeds
- Linux-based optimized versions run faster than the Windows executables
- 2 output files are generated per simulation
 - One file with summary data; one file with raw simulation results
 - Files are readable but better to import in MATLAB

- Import to MATLAB using "accordImport" function
- Quickly plot average time-varying data using "accordQuickPlot" function
- Customized plotting by making your own wrapper for "accordPlotMaker"
- Customized videos by making your own wrapper for "accordVideoMaker"
 - Pre-define camera angles or adjust at runtime


AcCoRD Demo Part 7

Part 7: Surface Reactions in Bounded Environment

- Molecules released from green surface
- Flow carries molecules along blue box
- Reversible absorption to blue and yellow patches

AcCoRD Demo Part 8

Part 8: Resources

- Additional Examples
- Github for code development https://github.com/adamjgnoel/AcCoRD

Image: http://dx.doi.org/10.1016/j.nancom.2017.02.002

Advantages for AcCoRD:

- Flexible environment design for molecular communication (components)
- Powerful MATLAB utilities included for videos, distributions, and custom figures
- Detailed user manual with step-by-step instructions
- Many sample configurations
- On-going development

1 Overview of Molecular Communication

2 Introduction to Physical Chemistry Simulations

B Existing Software Tools

Generic Biophysical Simulators Molecular Communication Software

Software Demonstrations MUCIN AcCoRD

6 Conclusions

Recap of Learning Objectives

- Understand importance of simulations
- Understand the different scales of simulation
- Compare different simulation platforms
- Use existing software tools

Conclusions

- Simulations are invaluable Use them!
- Many existing platforms available

AcCoRD

www.warwick.ac.uk/adamnoel/software/accord/

• MUCIN https:

//www.mathworks.com/matlabcentral/fileexchange/ 46066-molecular-communication-mucin-simulator

- BiNS2 http://conan.diei.unipg.it/lab/index.php/ product/biological-nanoscale-simulator-bins2
- N3Sim http://www.n3cat.upc.edu/n3sim
- BNSim https://github.com/weiguopeng/BNSim2
- nanoNS3

http://gnan.ece.gatech.edu/ns-allinone-3.24.zip

- COMSOL https://www.comsol.com/multiphysics/
- ANSYS https://www.ansys.com
- URDME (pyURDME) https://pyurdme.github.io/pyurdme/
- Smoldyn http://www.smoldyn.org/
- LAAMPS https://lammps.sandia.gov

Homepage: www.warwick.ac.uk/adamnoel

AcCoRD Simulator:

www.warwick.ac.uk/adamnoel/software/accord/