(Micro/)Nanoscale Networks for a New World

Adam Noel

School of Engineering University of Warwick

4 February 2020

ES96T Seminar - (Micro/)Nanoscale Networks

Nanonetworks

Re-define Communication Network for micro/nanoscale $(10^{-6}/10^{-9}m)$

Communications Modeling

Same toolbox, different problems

Biophysical Signals

Can we understand and control signaling in "small" natural systems?

1 Background (20 min)

Communications Engineering and Networks Nanonetworking and Molecular Communication Applications

2 Communications Modeling and Analysis (15 min)

Micro/Nano Channel Modeling Communications and Networking Solutions

Biophysical Signal Propagation (10 min)

Simulation Tools Behavioral Dynamics Information Transfer

Occusion

Any communication system can be represented as follows:

• Message - Has information that we want to communicate

- Message Has information that we want to communicate
- Transmitter (TX) Packages and sends information

- Message Has information that we want to communicate
- Transmitter (TX) Packages and sends information
- Environment Physical space that information travels through

- Message Has information that we want to communicate
- Transmitter (TX) Packages and sends information
- Environment Physical space that information travels through
- Receiver (RX) Senses and collects the information

- Message Has information that we want to communicate
- Transmitter (TX) Packages and sends information
- Environment Physical space that information travels through
- Receiver (RX) Senses and collects the information
- Destination Where information is read

What do Communications Engineers do?

Engineers design and characterize each stage of this process

What do Communications Engineers do?

Engineers design and characterize each stage of this process

- 1 What is the information?
- 2 How to represent the information in a signal?
- What happens to the signal as it propagates?
- 4 How to detect the signal?
- 6 How to recover the information from the signal?

What do Communications Engineers do?

Engineers design and characterize each stage of this process

- 1 What is the information?
- 2 How to represent the information in a signal?
- 3 What happens to the signal as it propagates?
- 4 How to detect the signal?
- 6 How to recover the information from the signal?

How good are we at each step?

What are Communication Networks?

Each "device" could be both a transmitter and receiver

What are Communication Networks?

Each "device" could be both a transmitter and receiver

What are Communication Networks?

Each "device" could be both a transmitter and receiver

Imagine tiny networks with many thousands of devices

- Simple devices cooperating to complete challenging tasks
- Ultra-sensitive to changes in the environment
- Fully distributed and ad hoc
- Self-replicating

Imagine tiny networks with many thousands of devices

- Simple devices cooperating to complete challenging tasks
- Ultra-sensitive to changes in the environment
- Fully distributed and ad hoc
- Self-replicating

Is this a hopeless fantasy or current reality?

Richard Feynman, Caltech, 1959

"There's Plenty of Room at the Bottom"

Can we Re-Conceptualize What a Network Is?

Can we Re-Conceptualize What a Network Is?

Nanonetworks

A communication network using devices (*nanomachines*) with *nanoscale functional components*

Why do we Need Nanonetworks?

Devices are relatively simple and cannot do much on their own

Why Micro/Nano?

Many devices with nanoscale components are microscale in size

What objects are on the order of a nanometre in size?

- Biological cells most between $1 \,\mu$ m and $100 \,\mu$ m
- Single atoms under 1 nm in diameter
- "Small" molecules about 1 nm
- Proteins 5 10 nm
- Viruses on the order of 100 nm
- Cellular Organelles (subunits) 25 nm 1 μ m

A nice visual resource: http://scaleofuniverse.com/

What Can a Single Nanomachine Do?

Cells can be very complex structures

- Food Processing, Mobility, Reproduction, Sensing
- Communication

Cooperation: Making it Happen

Single nanomachines may be complex but limited output

- A **Nanonetwork** is the interconnection of nanomachines
- Cooperate to perform more complex tasks
- Share different local information

Examples of Natural Nanonetworks

Neuromuscular Junction

Neurons control muscle contraction

Examples of Natural Nanonetworks

Neuromuscular Junction

Quorum Sensing

Bacteria estimate population density

Neurons control muscle contraction

Nanonetworking for Communications Engineers

We want communication systems that are:

- Reliable low probability of receiver error
- Realistic achievable with current/future technology
- Really fast transmit as much data as possible

Aim of Communication Analysis

Robust network design that is not application-specific but does consider the envisioned capabilities of nanomachines

Conventional problem still exists - transmission of information

Nanonetworking Channels

Can our nodes be nanomachines? What does this change?

Nanonetworking Channels

Can our nodes be nanomachines? What does this change?

Two main streams of nanonetwork design consider using either:

- Electromagnetic Radiation a somewhat top-down design approach
- 2 Molecular Communication use molecules as information carriers

Molecular communication is a more natural choice for biologically-based nanomachines

Molecular Communication Experiments

Tabletop Signaling¹

¹Farsad, Guo, Eckford, Proc. IEEE INFOCOM Workshops, Apr. 2014

²Krishnaswamy et al., Proc. IEEE ICC, Jun. 2013

ES96T Seminar - (Micro/)Nanoscale Networks

Molecular Communication Experiments

Tabletop Signaling¹

¹Farsad, Guo, Eckford, Proc. IEEE INFOCOM Workshops, Apr. 2014
²Krishnaswamy et al., Proc. IEEE ICC, Jun. 2013

ES96T Seminar - (Micro/)Nanoscale Networks

Molecular Communication Experiments

Tabletop Signaling¹

Using Bacteria as Transceivers²

¹Farsad, Guo, Eckford, Proc. IEEE INFOCOM Workshops, Apr. 2014

²Krishnaswamy et al., Proc. IEEE ICC, Jun. 2013

ES96T Seminar – (Micro/)Nanoscale Networks

Molecular communication presents the following advantages:

- Feasibility Regarded as easier to implement than other approaches in the near term,
- Scale Appropriate size for nanomachines
- Bio-compatibility Integration with living systems possible (though not guaranteed!)
- Energy Efficiency Biochemical reactions have high efficiencies
- Functional Complexity Billions of years of evolution

Other advantages depend on the particular implementation

Molecular communication presents the following challenges:

- **Stochasticity** Random propagation of molecules, environmental noise
- Delay Propagation times very long compared to speed of light
- Range Techniques can have very short practical ranges
- **Fragility** Biological components can be environmentally sensitive (temperature, pH, other reagents)

- Targeted drug delivery Cooperatively release medication
- Health monitoring in vivo diagnostics
- Lab-on-a-chip Drug development and discovery
- **Regenerative medicine** Rebuild damaged tissues, organs
- Genetic engineering Manipulate DNA

DNA Double-Helix

- Environmental monitoring Detection of pollutants or toxins
- Degradation Safe conversion of undesired materials
- Chemical reactors Optimize production
- Quality control Identification of product defects
- Bottom-up formation Precise construction of components
- New functionality Integrate nanonetworks into new products

Background (20 min)

Communications Engineering and Networks Nanonetworking and Molecular Communication Applications

O Communications Modeling and Analysis (15 min)

Micro/Nano Channel Modeling Communications and Networking Solutions

Biophysical Signal Propagation (10 min)

Simulation Tools Behavioral Dynamics Information Transfer

Occusion

Modeling a Nanonetwork

How to characterize a nanonetwork?

Can we take ideas from modern communications engineering?

The Channel Modeling Problem

Mathematically describe what happens to signals between TX and RX

Diffusion

Many molecule collisions \rightarrow random behavior

Diffusion Many molecule collisions \rightarrow random behavior

Photo: Wikimedia (CC BY-SA 3.0) https://commons.wikimedia.org/wiki/File:Euphydryas_editha_5679.JPG

Mathematics of Diffusion

Solving partial differential equations

Mathematics of Diffusion

Solving partial differential equations

1936

Diffusion Curves

Describing expected behavior

Expected "point-to-point" channel response:

$$\overline{N}_{\mathsf{RX}}(t) = \frac{NV_{\mathsf{RX}}}{(4\pi Dt)^{3/2}} \exp\left(-\frac{d^2}{4Dt}\right)$$

Diffusion Curves

Describing expected behavior

Expected "point-to-point" channel response:

$$\overline{N}_{\mathsf{RX}}(t) = \frac{NV_{\mathsf{RX}}}{(4\pi Dt)^{3/2}} \exp\left(-\frac{d^2}{4Dt}\right)$$

Enhanced Diffusion

Molecule Degradation¹

$$\bigoplus_{A} \bigoplus_{E} \stackrel{\underline{k_i}}{\overset{}{\longleftarrow}} \bigoplus_{EA} \stackrel{\underline{k_i}}{\overset{}{\longrightarrow}} \bigotimes_{A_p} \bigoplus_{E}$$

¹Noel, Cheung, Schober, *IEEE Trans. NanoBiosci.*, Mar. 2014
²Noel, Cheung, Schober, *IEEE Trans. NanoBiosci.*, Sept. 2014

Enhanced Diffusion

Molecule Degradation¹

¹Noel, Cheung, Schober, *IEEE Trans. NanoBiosci.*, Mar. 2014
²Noel, Cheung, Schober, *IEEE Trans. NanoBiosci.*, Sept. 2014

Channel Models with Active Receivers

Reversible Adsorption¹

²Lu, Higgins, Noel, Leeson, Chen, *IEEE Trans. NanoBiosci.*, Dec. 2016

¹Deng, Noel, Elkashlan, Nallanathan, Cheung, IEEE Trans. Mol. Biol. Multi-Scale Commun., Dec. 2015

Channel Models with Active Receivers

Reversible Adsorption¹

Multiple Absorbers²

¹Deng, Noel, Elkashlan, Nallanathan, Cheung, IEEE Trans. Mol. Biol. Multi-Scale Commun., Dec. 2015

²Lu, Higgins, Noel, Leeson, Chen, *IEEE Trans. NanoBiosci.*, Dec. 2016

Background (20 min)

Communications Engineering and Networks Nanonetworking and Molecular Communication Applications

2 Communications Modeling and Analysis (15 min)

Micro/Nano Channel Modeling Communications and Networking Solutions

Biophysical Signal Propagation (10 min)

Simulation Tools Behavioral Dynamics Information Transfer

Occusion

Communications Analysis Overview

Communications Analysis Overview

Our Communication Problem

How reliably can we send information using diffusion?

Our Communication Problem

How reliably can we send information using diffusion?

Our Communication Problem

How reliably can we send information using diffusion?

Number of molecules at RX

Detection Performance

We can improve with system memory OR modifying the channel

Noel, Cheung, Schober, IEEE Trans. NanoBiosci., Sept. 2014.

Detection Performance

We can improve with system memory OR modifying the channel

Noel, Cheung, Schober, IEEE Trans. NanoBiosci., Sept. 2014.

Detection Performance

We can improve with system memory OR modifying the channel

Noel, Cheung, Schober, IEEE Trans. NanoBiosci., Sept. 2014.

Multiple Communication Links

Relaying can help you reach farther, faster¹

¹Ahmadzadeh, Noel, Schober, IEEE Trans. Mol. Biol. Multi-Scale Commun., Jun. 2015.

²Fang, Noel, Yang, Eckford, Kennedy, IEEE Trans. Mol. Biol. Multi-Scale Commun., Sept. 2017

Multiple Communication Links

Relaying can help you reach farther, faster¹

Cooperative Detection can improve reliability²

¹Ahmadzadeh, Noel, Schober, IEEE Trans. Mol. Biol. Multi-Scale Commun., Jun. 2015.

²Fang, Noel, Yang, Eckford, Kennedy, IEEE Trans. Mol. Biol. Multi-Scale Commun., Sept. 2017

Other Communications Results

Very Large Networks¹

¹Deng, Noel, Guo, Nallanathan, Elkashlan, IEEE Trans. Mol. Biol. Multi-Scale Commun., Jun. 2017

²Noel and Eckford, *Proc. IEEE ICC*, May 2017

Other Communications Results

Very Large Networks¹

¹Deng, Noel, Guo, Nallanathan, Elkashlan, IEEE Trans. Mol. Biol. Multi-Scale Commun., Jun. 2017

²Noel and Eckford, *Proc. IEEE ICC*, May 2017

Background (20 min)

Communications Engineering and Networks Nanonetworking and Molecular Communication Applications

Ocommunications Modeling and Analysis (15 min)

Micro/Nano Channel Modeling Communications and Networking Solutions

③ Biophysical Signal Propagation (10 min)

Simulation Tools Behavioral Dynamics Information Transfer

4 Conclusions

Popular Generic Simulators

Sample Commercial Platforms

COMSOL Multiphysics (Continuum)¹

ANSYS (Continuum)²

²https://www.ansys.com/products/fluids

Images: ¹https://uk.comsol.com/multiphysics/what-is-mass-transfer

Popular Generic Simulators

Sample Open Source Platforms

Dynamics)³

Images: ¹https://doi.org/10.1186/1752-0509-6-76, ²https://doi.org/10.1371/journal.pcbi.1000705, ³https://lammps.sandia.gov/prepost.html

AcCoRD

Actor-based Communication via Reaction-Diffusion

- Written in C with utilities in MATLAB
- "Sandbox" environment design
- Chemical reactions, flow, surfaces, membranes, data modulation
- MATLAB utilities for making videos and plots
- Public website with user manual available

Image: Noel, Cheung, Schober, Makrakis, Hafid, Nano Commun. Networks, Mar. 2017 Software: www.warwick.ac.uk/adamnoel/software/accord/

Sandbox Environment Design with AcCoRD

AcCoRD: Actor-Based Communication via Reaction-Diffusion

https://www.youtube.com/watch?v=xOGkKG8PsCE

Software: www.warwick.ac.uk/adamnoel/software/accord/

Noel, Cheung, Schober, Makrakis, Hafid, Nano Commun. Networks, Mar. 2017
Transceiver Behavior

Behavioral Communication Problems

Devices may not always behave the way we expect them to

Cooperation vs. Competition

Behavioral Communication Problems

Devices may not always behave the way we expect them to

Behavior in Microscopic Cellular Populations

Heterogeneous Quorum Sensing

Noel, Fang, Yang, Makrakis, Eckford, arXiv

Behavior in Microscopic Cellular Populations

Heterogeneous Quorum Sensing

Tumor Growth and Development

Noel, Fang, Yang, Makrakis, Eckford, arXiv

Behavior in Microscopic Cellular Populations

Heterogeneous Quorum Sensing

Tumor Growth and Development

The Idea

Noisy signaling contributes uncertainty for us to mitigate or enhance

Noel, Fang, Yang, Makrakis, Eckford, arXiv

Information Theory in Biochemical Processes

How much information is there?

- Optogenetics lets us externally stimulate neurons
- What are the limits to generate any kind of spike train?
- We are constrained by a neuron's membrane potential dynamics

Noel, Makrakis, Eckford, IEEE Trans. Biomed. Eng., in press

Background (20 min)

Communications Engineering and Networks Nanonetworking and Molecular Communication Applications

O Communications Modeling and Analysis (15 min)

Micro/Nano Channel Modeling Communications and Networking Solutions

3 Biophysical Signal Propagation (10 min)

Simulation Tools Behavioral Dynamics Information Transfer

Occusion

Nanonetworks connect devices over very small physical scales

Nanonetworks connect devices over very small physical scales

Conventional communication methods can be adapted to model nanonetworks

Nanonetworks connect devices over very small physical scales

Conventional communication methods can be adapted to model nanonetworks

Going Forward

Incredibly broad potential applications (health, environment, manufacturing)

Homepage: www.warwick.ac.uk/adamnoel