
On Storing Private Keys “In the Cloud”
(Extended Abstract)

Jonathan Anderson and Frank Stajano
{jonathan.anderson,frank.stajano}@cl.cam.ac.uk

University of Cambridge
Computer Laboratory
15 JJ Thomson Avenue

Abstract. Many future applications, such as distributed social net-
works, will rely on public-key cryptography, and users will want to access
them from many locations. Currently, there is no way to store private
keys “in the cloud” without placing complete faith in a centralised op-
erator. We propose a protocol that can be used to share secrets such as
private keys among several key recovery agents, using a weak password,
in a way that prevents insiders from recovering either the private key
or the password without significant collusion. This protocol will enable
the safe storage of private keys online, which will facilitate the advent of
secure, decentralized, globally-accessible systems.

1 Introduction

Today, online services such as social networks can rely on passwords for authen-
tication because they are provisioned in a centralised way: user passwords, or
hashes thereof, can be tested against values stored on the provider’s servers. The
integrity of the personal information stored in these networks is attested to by
the service provider, which implicitly asserts that “you should believe that Alice
said this because I know that the person who typed it in knew Alice’s password.”

We have proposed that in the future, distributed social networks will provide
such attribution via public-key cryptography, taking centralised providers out
of the identify verification game [1]. The trouble is, public-key cryptography
requires the secure storage of private keys, and a system that requires users
to carry a Trusted Computer Base (TCB) in order to post status updates is
unlikely to compete well with traditional, familiar, tokenless authentication via
password.

Other online services have a similar problem. Webmail providers may typi-
cally be trustworthy, but as Chinese dissidents have discovered, they sometimes
co-operate “regularly and efficiently” with authorities [2] in order to operate in
nations with widely varying standards of free speech and tolerance for politi-
cal diversity. Many online services allow or require users to register an e-mail
address as a backup authentication channel in case they lose their password,
but acquiring access to this e-mail account gives an adversary the keys to the

proverbial kingdom: if she can read your e-mail, she can reset all of your other
passwords. Online services could use stronger means of authenticating users, e.g.
SSH keys or client certificates, but the problem is, again, that forcing users to
carry a TCB for authentication is likely not a smart business strategy.

One could propose a system in which private keys are stored encrypted on a
server, but this only solves the problem if the user can remember a cryptograph-
ically strong key with which to decrypt their private key.

The problems that we wish to solve are:

Problem 1. We wish to allow users to recover very sensitive information, such
as private keys, from an untrusted online service without needing to remember
cryptographically strong secrets.

We discuss the authentication properties of this problem in Section 2, in par-
ticular justifying the use of weak passwords in a system that uses public keys.
We propose a concrete threat model in Section 3 in the context of a distributed
social network, describing security threats from both insiders and outsiders.

A related problem is plausible deniability :

Problem 2. We wish for the key recovery service to provide outsiders and mali-
cious insiders with as little information as possible about the users of the service,
including their identities and knowledge of whose keys are stored where.

We propose a series of cryptographic protocols in Section 4 which answer Prob-
lem 1, allowing our user to recover his private key from untrusted sources, and
move towards answering Problem 2, requiring progressively less trust in the other
principals involved.

2 Passwords

The most widely-deployed authentication system for online services is also the
least expensive: “something you know”, typically a username and (likely weak)
password. Authentication credentials are revealed to the computer that they are
typed on and the centralised service’s provider, both of which have the ability
to violate the user’s security expectations and must thus be trusted absolutely.

Since we propose using public-key cryptography for message integrity, it is
tempting to require users to carry some form of Trusted Computing Base, per-
haps storing private keys on a mobile phone. If, however, we want to enable the
use case, “Alice wants to use an online service on a friend’s computer with a
proper screen,” then either:

1. the computer and Alice’s phone must be tethered e.g. via Bluetooth, or
2. Alice’s private key must be made available to the computer.

The first of these options may be acceptable for services such as online banking,
but for photo sharing or other social applications, only the second, with its un-
interrupted workflow, is likely to encourage widespread adoption. Alice is going
to supply the local machine with her private key, so there is little reason for her

to carry it around with her. Rather, she should be able to retrieve it from “the
cloud,” using nothing but what she knows to authenticate herself, and what she
knows is likely to be a very weak password.

It is true, then, that we require Alice to gauge the trustworthiness of the
computer that she is sitting in front of. This is, on the face of it, a ludicrous
requirement, but it is a requirement which is currently accepted by many, many
users: despite the existence of keyloggers and other malware, people use online
services via computers owned by friends, airport lounges and other internet cafés.
This decision is made, implicitly or explicitly, based on the user’s perception of
the computing environment, sensitivity to risk, education in security issues, etc.

In short, to use computers is to trust computers. We do not attempt to solve
this problem, but we do reduce the number of principals which the user must
trust. In the current model, there is an implicitly trusted service provider at
the other end of the TLS tunnel whose security practices may be unknown. We
replace absolute faith in this single principal with limited trust in a number of
principals, reducing the trust that we are required to place in any one.

3 Principals

Bob, B, is a user of a distributed online social network. This network has no
central, trusted authority to map Bob’s digital identity onto his real-world one,
so his client software proves who he is using Bob’s private key.

Wishing to access the network from abroad without carrying any hardware,
Bob prepares a private keyK−1

B , which he advertises to his peers along with a set
of constraints1. He then enlists friends Alice, Alexa, Alicia, etc. (A0, A1, A2, . . .)
to act as “key recovery agents” on his behalf: each will run code on their com-
puters that stores some portion of the private key, which will only be given out
to Bob later if he authenticates himself with the weak password kB

2.

3.1 Insiders

We assume that Alice, Alexa, etc. are not particularly malicious — they will
try to guard secret information that they are entrusted with and they will not
collude en masse — but they not particularly trustworthy either. In particular,
any or all of these key recovery agents may be susceptible to curiosity or malware.

1 For instance, Bob could prepare one key per calendar week and declare them valid
for signing instant messages but not sharing photos. This would ensure that, if a key
is compromised by an untrustworthy computer, the damage which can be done is
limited.

2 We assume that Bob is able to recover his public key, KB , and those of his agents
(KA0 , KA1 , . . .) from a public source, but that the only secret information which
can be used for authentication across sessions, computers, etc. is kB . This means
that the public keys which Bob recovers can be used to provide confidentiality of
communications, but not authentication of principals.

Curiosity We assume that, if Bob gives his private key and/or password to
Alice in the clear, she might look at it out of sheer curiosity. In fact, Alice
might even be willing to mount a dictionary attack if it is easy enough to do.
This definition of curiosity is different from the classical sense of “honest-but-
curious:” an honest-but-curious participant will complete a protocol faithfully,
but may gossip with the other participants after the protocol run in order to
learn additional information [3]. We assume that an agent will not collude with
k − 1 of n others in order to learn additional secrets such as Bob’s private key
or password.

Malware We assume that many, or even all, agents may be infected with mal-
ware that can read any stored information and eavesdrop on any network com-
munication. In our favour, however, we assume that the malware which infects
the various agents is not capable of collusion.

Malice We assume that, without resorting to large-scale collusion, one agent
may attempt impersonating Bob to another agent in order to learn secrets such
as Bob’s private key K−1

B or password kB .

3.2 Outsiders

We assume that there is a malicious outsider, Eve, who can observe all communi-
cation between Bob and his agents, and that she might attempt to impersonate
either Bob or a subset of agents. Her goal may include learning Bob’s password
and/or private key or assertaining which agents Bob has stored his key with, or
even simply whether or not Bob uses the system.

4 Protocols

We present several protocols, beginning with a “straw man” and building in-
crementally towards the final goal of key recovery (Problem 1) which thwarts
attacks from both insiders and outsiders (Problem 2). Each protocol is more
complex than its predecessor, but also mitigates more attacks.

4.1 Trusted Storage

The first, essentially trivial protocol we consider is to store the private key on
a trusted server in the clear. This is analogous to a common practice in backup
authentication: if Bob loses his Flickr password, he can have a reset token sent
to his webmail account, which is hosted by a trusted provider. Since Bob is able
to download Alice’s public key from a public source, the protocol is simply:

B → A : {B,Kt}KA

A→ B : {n}Kt

B → A : {kB , n}KA

A→ B :
{
K−1

B

}
Kt

in whichKt is a temporary key used by Bob to provide confidentiality until he
recovers his private key K−1

B , and n is a nonce selected by Alice, which prevents
Eve from performing a replay attack should she later learn the value of Kt.

Attacks This protocol prevents outsiders from conducting successful dictionary
attacks, since Alice can simply limit the rate of incoming password guesses. Eve’s
dictionary attack must be performed online, so Bob’s password can be as weak
as an English word.

There are, however, two very obvious attacks against the system: firstly,
insider Alice can simply read Bob’s private key and password in the clear, and
secondly, outsider Eve can impersonate Alice to Bob in order to learn Bob’s
password—Bob can download a KA which is attributed to Alice, but without a
shared secret, he has no way to verify that it is actually Alice’s key.

4.2 Semi-Trusted Storage

A slight improvement on the previous scheme is the “semi-trusted storage”
scheme, in which Alice does not hold Bob’s password and private key in the
clear, but rather a cryptographic hash of the password with her own public key,
h (KA|kB), and the private key encrypted using the weak password,

{
K−1

B

}
kB

.
The protocol is very similar to that of the trusted storage scheme:

B → A : {B,Kt}KA

A→ B : {n}Kt

B → A : {h (KA|kB) , n}KA

A→ B :
{{
K−1

B

}
kB

}
Kt

After receiving message 3, then, Alice verifies that h (KA|kB) matches her
stored copy, and returns

{
K−1

B

}
kB

to him in message 4.

Attacks This protocol prevents a truly disinterested Alice from reading Bob’s
password and key, but it does little to stop a curious Alice or a clever Eve: either
can mount an offline dictionary attack, against either the private key (Alice) or
the password hash (Alice or Eve). Since the password is assumed to be weak, we
expect that such an attack would succeed without very much effort.

4.3 Threshold Encryption

A logical extension to this protocol is for Bob to spread his private key across
several agents, Alice, Alexa, Alicia, etc. using a standard k of n secret sharing
scheme [4]. In this case, Alice stores h (KAi |kB), which is a version of h (KA|kB)
above, but personalized to her, and instead of the private key K−1

B she stores

Di, which is one portion of the key KB shared according to the thresholding
scheme. The protocol between Bob and any of his agents is now:

B → Ai : {B,Kt}KAi

Ai → B : {n}Kt

B → Ai : {h (KAi
|kB) , n}KAi

Ai → B : {Di}Kt

Attacks This addition to the protocol prevents Alice (or Alexa, Alicia, etc.)
from reading Bob’s private key or performing a dictionary attack against its
encrypted form, but there is nothing to prevent her or impostor Eve from at-
tacking the weak password by brute force and, once sucessful, impersonating
Bob to other key recovery agents in order to assemble Bob’s public key.

4.4 Collision-Rich Password Hashing

We can improve on this protocol further by using collision-rich functions [5]. In
this case, Bob authenticates to Alice via a hash function that intentionally has
many collisions. This means that Bob’s authentication to Alice is weaker, but
two important purposes have been served:

1. Alice does not need to know kB or even h (KAi
| kB), but merely h (KAi

| kB)modN
(see the Insider Dictionary Attack, below), and

2. Eve, should she impersonate Alice, will not be able to perform a successful
offline dictionary attack3 (see the Outsider Dictionary Attack, below).

The protocol is now:

B → Ai : {B,Kt}KAi

Ai → B : {n,N}Kt

B → Ai : {h (KA | kB) modN,h (n) , N}KAi

Ai → B : {Di}Kt

where N is a number chosen by Bob when he enlists Alice’s help as a key
recovery agent.

Attacks Having eliminated the most straightforward attacks, we introduce more
interesting ones.
3 Collision-rich hash functions frustrate dictionary attack because the input can be
grouped into equivalence classes, any member of which will produce the same output
as any other member. Which member is actually the correct password must be
determined by online dictionary search, which will be expected to fail if the classes
are large.

Insider Dictionary Attack Using this protocol makes it more difficult for Alice
to obtain Bob’s password via offline dictionary attack, since many passwords
generate the same hash. If the number of possible passwords is x, then the
number of password candidates that Alice will be able to learn from an offline
dictionary attack is: {

x N ≥ x
x
N N < x

.
Since Alice’s hash takes both Bob’s password and Alice’s identity and input,

the hashes stored at each key recovery agent are independent. Thus, if Alice
attempts to impersonate Bob to Alicia, she will have no likelihood information
about the x

N candidate passwords.
Still, there are n − 1 other agents that Alice can go to and try to confirm

Bob’s password. If we allow Alice α guesses at each, she will expect to guess
Bob’s password if

α · (n− 1) ≥ x

2N
N ≥ x

2α · (n− 1)

.
If we assume that Bob uses n = 9 recovery agents with α = 5 attempts

allowed and a dictionary of 10,000 equally-probable passwords4, then Alice would
expect to be able to guess his password if N ≥ 125.

Large-N Attack If Eve impersonates Alice, she could send a large value of N to
Bob. He should ignore values which lie outside of some reasonable range related
to the strength of his password.

Outsider Dictionary Attack If N is small—in order to minimize the success
probability of insider attack—there is a non-trivial chance that Eve may be
able to obtain Alice’s portion of the shared secret by impersonating Bob and
authenticating to Alice with a randomly-selected x ≤ N . This does not give Eve
access to Bob’s key, however, only one portion of it. In order to recover Bob’s
key, she needs k portions of the secret. This is still difficult, because having
successfully guessed x ≤ N , Eve is now effectively in the same position as Alice,
attempting to employ the Insider Dictionary Attack.

4 Of course, in a natural-language or chosen-password dictionary, all words are not
equally probable. If the dictionary is small, however (e.g. 10,000 words / 4-digit
PINs), random assignment is possible. If user-chosen passwords are essential for
memorability reasons, password strengthening techniques might be of use, even if
they are of little help against a conventional offline dictionary attack.

Impostor Identity Disclosure Attack If Eve impersonates Alice, she will not be
able to learn Bob’s password easily, for the reasons given in the section on the
Insider Dictionary Attack. Neither will she be able to perform a completely
successful middleperson attack, since the hash h (KA|kB) is bound to Alice’s
public key. She would, however, learn that Bob has stored his private key with
Alice by virtue of the fact that he has attempted authentication, so Problem 2
is still not satisfied.

4.5 Collision-Rich Identity Hashing

In order to prevent identity disclosure in the face of the Impostor Identity Dis-
closure Attack, we can add one more layer of complexity: collision-rich hashing
of Bob’s identity. To prevent such hashes from acting as de facto persistent iden-
tifiers while allowing agents to perform their service for many clients, Bob should
first send Alice a collision-rich hash which takes both his identity and Alice’s as
input, using a very low modulus of his choice. If Alice cannot disambiguate him
using this hash, he can try again using a different modulus, reducing the size of
the set of possible client identities to one (possibly after several iterations).

B → Ai : {h (Ai|B)modN,N,Kt}KAi

Ai → B : try again
B → Ai : {h (Ai|B)modN ′, N ′,Kt}KAi

Ai → B : {n,N ′′}Kt

B → Ai : {h (kB |A) modN ′′, h (n)}KAi

Ai → B : {Di}Kt

Attacks This protocol gives the same (low) probability of successful dictionary
attack by insider or outsider, and it also counters the Impostor Identity Disclo-
sure Attack, for the same reasons. It does not, however, mitigate the potential
for traffic analysis: a technically compotent adversary could observe that Bob
has connected to Alice.

5 Related Work

Lomas and Christianson [5] have used collision-rich hash functions to provide
assurance of OS kernel integrity when booting across an untrusted network.

SRP [6] is a protocol which allows clients to authenticate to servers using
zero-knowledge proofs, but it provides little protection against a malicious server
unless the user’s password is strong enough to resist an offline dictionary attack.

6 Conclusion

We have developed a protocol which allows a user to store a private key “in the
cloud,” using the services of several key recovery “agents” who are expected to
be curious and perhaps even malicious, but who are trusted not to collude en
masse. The user is able to authenticate himself to these agents using a very weak
password, yet the agents are unable to learn what the password is, and malicious
outsiders are unable to even verify that a particular user avails himself of the
recovery service.

Using such a key storage service enables the development of online services
that rely on public key cryptography without requiring users to carry key ma-
terial with them. We hope that these future services, such as distributed social
networks, will allow people to do the things that they want to do online without
needing to place absolute faith in any one software developer or service provider.

Acknowledgements

We would like to thank Joseph Bonneau, Bruce Christianson and Michael Roe
for their helpful review of this work.

References

1. J. Anderson, C. Diaz, J. Bonneau, and F. Stajano, “Privacy-Enabling Social Net-
working Over Untrusted Networks,” the Second ACM SIGCOMM Workshop on So-
cial Network Systems (WOSN ’09), pp. 1–6, May 2009.

2. R. Blakeley, “Yahoo in second Chinese blogger row,” TimesOnline, Jan 2006.
3. A. Beimel and B. Chor, “Secret Sharing with Public Reconstruction,” in CRYPTO

’05, pp. 353–366, 1995.
4. A. Shamir, “How to share a secret,” Communications of the ACM, vol. 22, Nov 1979.
5. M. Lomas and B. Christianson, “Remote Booting in a Hostile World: To Whom Am

I Speaking?,” IEEE Computer, pp. 50 – 54, 1995.
6. T. Wu, “The Secure Remote Password Protocol,” in the 1998 Internet Society Net-

work and Distributed System Security Symposium, pp. 97–111, 1998.

