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The case for sandboxing

Today’s users need more protection than traditional Unix systems have been able
to deliver. The authors of operating systems have traditionally had a great deal
of interest in systemic notions of privilege (e.g., the authority to inject code into
the kernel via modules), but the users of computing systems often require finer-
grained models of access control (e.g., the ability to share a single contact or delegate
management of a single calendar). Rather than protecting multiple users from each
other, the operating systems of today’s end-user devices must protect a single user
from their applications and those applications from each other. Historic Unix-
derived systems have not made this task easy; in some cases, the protection users
need has not even been possible.

Protection was a first-class objective of early general-purpose operating systems and
the hardware they ran on [Lamp69, And72, SS72]. This early focus led naturally
to the exploration and design of rigorous, general-purpose protection primitives
such as capabilities [DV66] and virtual memory [BCD69, Lamp69]. In the transi-
tion from Multics to Unix dominance, this focus was lost. The result was a highly
portable operating system that would go on to dominate contemporary thinking
about operating systems, but with security features primarily organized around one
threat model: users attacking other users (including accidental damage done by
buggy software under development). This security model — Discretionary Access
Control (DAC) — can be implemented with Unix owner/group/other permissions
or with Access Control Lists (ACLs), but it does not provide adequate support for
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application sandboxing. FreeBSD, Linux and MacOS eventually acquired frame-
works for enforcing systemic security policies such as multi-level security and in-
tegrity enforcement [WFMV03, WCM+02, Wat13], collectively known asManda-
tory Access Control (MAC). Such policies represent the interests of system owners and
administrators and provide an additional dimension along which enforcement can
be specified, but they are better-suited to tasks such as protecting high-integrity
files from low-integrity data than to supporting sandboxing in unprivileged appli-
cations.

The goal of sandboxing is to protect users from their own applications when those
applications are exposed to untrusted content. Complex applications are regularly
exposed to content from malicious sources, often embedded within difficult-to-
parse protocols and file formats. This is especially true on the Internet, where
even the most basic use cases involve ASN.1 parsing (for TLS) as well as pars-
ing documents, Web pages, images and videos as well as interpreting scripts or
encoding/decoding cookies. Even the humble file(1) command was patched in
2014 for vulnerabilities in its parsing code [SA14:16]. Once a process is compro-
mised by malicious content, the goal of a sandboxing policy is to limit the poten-
tial for damage to a small set of known outputs. For example, a compromised
word processor may be able to corrupt its output files, but it should not be able
to search through a user’s home directory for private keys or saved credit card de-
tails. Sandboxing-specific features (or, as they are sometimes referred to, attack-
surface–reduction features) such as FreeBSD’s Capsicum, OpenBSD’s pledge(2)
and Linux’s seccomp(2) have appeared comparatively recently; we compare their
effectiveness below.

Sandboxing with DAC/MAC

Prior to the introduction of sandboxing features in commodity operating systems,
valient efforts were made to confine or sandbox applications with the tools that were
available. These efforts met with varying degrees of success, depending on how well
the designed security policy fit onto a discretionary or mandatory access control
(DAC or MAC) model. The most successful applications of sandboxing required
relatively small code changes to meet their security objectives, which tended to fit
the coarse-grained security model of DAC or the system-security perspective of
MAC. Less successful forays into sandboxing required thousands of lines of code,
sometimes with large amounts of hand-crafted assembly, a requirement for system
(superuser) privilege and — often — a failure to truly enforce the desired security
policy.

An early — and relatively successful — implementation of sandboxing was Provos
et al.’s privilege separation of the OpenSSH server [PFH03]. This work used discre-
tionary access control features to prevent a compromised SSH server process from
exercising the privileges of the superuser. The SSH server requires superuser privi-
lege in order to bind to TCP port 22, but it is desirable that a compromised SSH
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process not be able to access system resources such as the filesystem before a user
has authenticated (i.e., the server should be put into a pre-auth sandbox); it is also
desirable that the server post-authentication only be able to exercise the authority
granted to the authenticated user (from within a post-auth sandbox). Provos et al.
split the SSH server process into a trusted monitor process that retained superuser
privilege and untrusted child processes that would use the superuser privilege to
drop privilege, changing their user and group IDs to those of unprivileged users. In
the pre-auth sandbox, an SSH server process could run as the nobody user and have
its root directory changed to an empty directory using the chroot(2) system call.
In the post-auth sandbox, a process would have its UID/GID changed to those of
the authenticated user. This approach to sandboxing was successful for two reasons:

1. User-oriented policy The goal of SSH privilege separation is to keep com-
promised processes from exercising the authority of the superuser. This
policy goal aligns well with the Unix DAC model: it can be expressed
entirely in terms of UIDs, GIDs and filesystem directories with Unix
permissions. The policy does not protect a user from misbehaviour post-
authentication: it protects the system and other users.

2. Extant privilege Operations such as changing a process’ UID or root di-
rectory require superuser privilege, which the SSH server undergoing
privilege separation already possessed. The sshd process was already a
security-critical piece of software run as root: privilege separation was
a monotonic decrease in authority. This is not the case for the more
general case of sandboxing, however: it is undesirable to require unpriv-
ileged software to run as root in order to drop privilege.

At the other end of the spectrum, we have previously compared several DAC- and
MAC-based approaches to sandboxing renderer processes in the Chromium web
browser [WALK10]. In that work, we found that DAC and MAC mechanisms
were a poor fit for the application compartmentalization use case. DAC is designed
to protect users from each other, but in the case of a Web browser — or any other
sophisticated, multi-process user application — the security goal is to limit the
damage that can be done by a rogue process after it is compromised by untrusted
content. DAC alone cannot control access to unlabelled objects such as (in Linux)
System V shared memory or (in Windows) FAT filesystems. As with OpenSSH,
chroot(2) can be used to put a process into an environment of limited filesystem
access, but unlike OpenSSH, the superuser privilege required to use chroot(2) is
not naturally found in Web browsers (or office suites, music players, other desktop
applications, etc.). Thus, in order to avail of the DAC-based protection that did
exist, portions of the application had to be shipped with the setuid bit set on a
root-owned binary!3

Mandatory Access Control (MAC) is also a poor fit for application sandboxing.
It requires a dual coding of policy: once in the code that describes what the ap-

3Today’s Chrome no longer uses the DAC-based sandbox on Linux, but the above comments about
chroot(2) and privilege still apply to the new sandboxing model.
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plication does and once in a separate policy that describes what the application is
allowed to do. The SELinux policy from our original Capsicum comparison in-
volved thousands of lines of policy, but even modern AppArmor profiles encoded
in a domain-specific language can require hundreds of lines of subtle and complex
policy, not including policy elements included from system policy libraries (e.g.,
#include <abstractions/ubuntu-browsers.d/java>). It can be very difficult
to write and maintain complex MAC policies, with failures in functionality (e.g., a
lack of access to @{PROC}/[0-9]*/oom_score_adj) being more obvious to devel-
opers than lapses in protection (e.g., allowing access to /usr/bin/xdg-settings,
which relies on the PATH environment variable not being hijacked). This complex-
ity is a hint that we are attempting to fix the square peg of sandboxing into the
round hole of MAC.

“Sandboxing” with system-call interposition

Before comparing today’s approaches to post-DAC, post-MAC sandboxing, it is
essential to understand an intermediate approach that was attempted in the late
1990s and early 2000s. This approach was attractively simple, but ultimately failed
to provide the security benefits it advertised. Those who fail to learn from this
now-discredited approach are condemned to repeat its mistakes in their “new” ap-
proaches to application sandboxing.

A seminal attempt to generalize policy enforcement for arbitrary applications with-
out system privilege was Fraser, Badger and Feldman’s Generic Software Wrappers
[FBF00], which inspired better-known systems such as Provos’ systrace [Prov03].
These system-call interposition systems used userspace wrappers or shallow modifi-
cations to the system-call layer of an OS kernel to intercept system calls. Once
intercepted, these calls’ arguments could be inspected and a policy decision could
be made as to whether or not the call should be allowed. For example, instead of us-
ing chroot(2) to limit a process’ access to the filesystem, every open(2) call could
be inspected and the filename argument could be compared against a whitelist of
paths the process is allowed to open. System call policies could be described in
languages that, while requiring dual coding as in MAC, had the benefits of conci-
sion and comprehensibility, as shown in Figure [WRAPPER-POLICY-FIG]. Sys-
tem call wrappers had the twin benefits of being relatively simple to implement
and relatively simple to use. Unfortunately, their simplicity translated into a fail-
ure to engage with the complexities of concurrent accesses in operating systems, as
demonstrated by Watson in 2007 [Wat07].

# GSWTK policy
#include "../../wr.include/platform.ch"

wrapper bsd_noadmin {
bsd::op{mount || unmount || ...} pre {

return WR_DENY | WR_BADPERM;
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};
}

# systrace policy
Policy: /usr/sbin/named, Emulation: native

native-__sysctl: permit
native-accept: permit
native-bind: sockaddr match "inet-*:53" then permit
native-break: permit
native-chdir: filename eq "/" then permit
native-chdir: filename eq "/namedb" then permit
native-chroot: filename eq "/var/named" then permit
native-close: permit
native-connect: sockaddr eq "/dev/log" then permit
...

Figure [WRAPPER-POLICY-FIG]: policies governing system call wrapper
behaviour for the Generic Software Wrapper Toolkit and systrace (reproduced
from [FBF00] and [Prov03], respectively).

Objects named by Unix system calls are concurrent on multiple levels. At the shal-
lowest level, all of a process’ threads are contained within the same virtual address
space and can thus manipulate the same data — this includes strings being passed
as arguments to system calls. When system call wrappers work in userspace, a ma-
licious process can submit a system call for execution with a path that is known
to be whitelisted and then, while the wrapper’s policy check is executing, modify the
value of the memory containing the filename to a different path. Thus, the path
that is checked against the policy can be different from the path that is eventually
accessed. To use Watson’s language, this is a Time-of-check-to-time-of-use (TOCT-
TOU) vulnerability [Wat07].

TOCTTOU vulnerabilities are not merely found at this shallow layer of intercep-
tion, however. If they were, interception would only need to be done via RPC
to be secure. System call wrappers are vulnerable in a deeper, more fundamental
way: even if the name used to reach an OS object such as a file remains constant,
the meaning of that name can change. Path lookup is an incremental operation in
Unix: looking up a file named /home/jon/foo.txt will involve interactions with
at least four vnodes in a virtual file system (the root node, two directories and the
file itself ). While each individual lookup (e.g., retrieving the jon directory entry)
must be done with due care for concurrency, e.g., while holding a lock, the over-
arching path lookup is not an atomic operation. A path is a list of instructions,
not a name. While one process is walking a directory hierarchy, another can be
changing the filesystem, moving files, moving directories, even changing symbolic
links. System-call interposition, even if performed via RPC with no possibility of
in-memory path substitution, cannot guarantee that the file named by a path at
the time a policy decision was made is the same file that will be looked up by the
system call doing the lookup.
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Fundamentally, the weakness of system-call interposition is that its policy decisions
(i.e., checks) are not made atomically with the effects of those decisions. This is
not a vulnerability that requires a patch, it is a fundamental limitation of the ap-
proach; it is why such methods are no longer used on contemporary operating
systems (OpenBSD expunged systrace in April of last year [Gros16]). However,
even though system-call interposition systems have been deprecated, the underlying
concept returns to haunt more modern sandboxing frameworks.

A comparison of sandboxing frameworks

More recently, open-source Unix derivatives have implemented new frameworks
to aid in application sandboxing. These frameworks include, most compara-
bly, Linux’s seccomp(2), OpenBSD’s pledge(2) and FreeBSD’s Capsicum
(capsicum(4))4. Although they were all created with the goal of enabling simple
sandboxing, they have achieved varying degrees of success.

Linux: seccomp(2)

Since 2005, Linux has included a feature called “secure computing mode”, or
seccomp(2) for short [Cor09]. The original version of seccomp(2) provided a
strong, comprehensible security policy: processes in “secure computing mode” can
use the read(2) and write(2) system calls to operate on files they have previ-
ously opened (or had delegated to them), sigreturn(2) to support signal delivery
and the exit(2) system call to terminate the process. It is simple for a process
to enter seccomp mode, as shown (in abridged form5) in Figure [SECCOMPv1].
This policy had the benefit of clarity and it did permit processes to operate as fil-
ters performing otherwise-pure computation, but very few applications are able to
perform meaningful work within such a restrictive sandbox. For example, we pre-
viously found that Chrome’s use of the “pure” seccomp(2) mode required over a
thousand lines of security-critical assembly-language code to forward system calls
outside of the sandboxed process and into a trusted process that would perform the
system calls on its behalf [WALK10].

if (prctl(PR_SET_SECCOMP, SECCOMP_MODE_STRICT) != 0)
{

err(-1, "error entering secure computing mode");
}

Figure [SECCOMPv1]: entering the original, “pure” version of Linux’s secure com-
puting mode is trivial. Once a process is in seccomp mode it can never leave.

4Discussion of Apple’s Sandbox framework and its MAC Framework underpinnings is left to other
sources [Wat13].

5Full source code for the examples in this section can be found at https://github.com/trombonehero/
sandbox-examples.

6

https://github.com/trombonehero/sandbox-examples
https://github.com/trombonehero/sandbox-examples


In order to provide a richer environment for computing, modern secommp(2) al-
lows programs to specify their own security policy beyond the four system calls
enumerated above. In this new version of seccomp(2), a process can specify a pro-
gram to check each system call’s validity before executing it. This program is written
in the BPF bytecode format. The BSD Packet Filter (BPF) [MV93], inspired by the
CMU/Stanford Packet Filter (CSPF), itself inspired by earlier work on the Xerox
Alto [MRA87], is a virtual machine that interprets bytecode. It was originally de-
signed to facilitate high-performance networking by allowing userspace processes
to describe a filter for the kernel to apply to network packets without giving up
the safety of the kernel/user mode separation. When applied to seccomp(2), BPF
provides a syntax for describing programs that check system calls within the Linux
system call handler.

#define Allow(syscall) \
BPF_JUMP(BPF_JMP+BPF_JEQ+BPF_K, SYS_##syscall, 0, 1), \
BPF_STMT(BPF_RET+BPF_K, SECCOMP_RET_ALLOW)

struct sock_filter filter[] = {
// Check current architecture: syscall numbers are
// archictecture-dependent on Linux!
BPF_STMT(BPF_LD+BPF_W+BPF_ABS, ArchField),
BPF_JUMP(BPF_JMP+BPF_JEQ+BPF_K, AUDIT_ARCH_X86_64, 1, 0),
BPF_STMT(BPF_RET+BPF_K, SECCOMP_RET_KILL),

// Check syscall:
BPF_STMT(BPF_LD+BPF_W+BPF_ABS, SYSCALL_NUM_OFFSET),
Allow(brk), // allow stack extension
Allow(close), // allow closing files!
/* ... */
Allow(openat), // to permit openat(config_dir), etc.
BPF_STMT(BPF_RET+BPF_K, SECCOMP_RET_TRAP), // or die

Figure [SECCOMP-BPF]: an example of a simple seccomp-bpf filter that allows
the brk(2), close(2) and openat(2) system calls to proceed (based on an example
from Bernstein [Bern17]).

An example of a simple system-call whitelisting filter is shown in Figure
[SECCOMP-BPF]. This illustrates the extreme flexibility and programmability of
seccomp-bpf: almost any check that can be imagined on a system call’s arguments
can be expressed in an assembly-like language like BPF. However, the corollary to
this is that because anything can be checked by the programmer, everything must
be checked by the programmer. In order to build a meaningful whitelist of system
calls, not only must the offset of the syscall number within a larger structure be
exposed to user-mode programs, the provided filter must also inspect the current
architecture in order to interpret the syscall number (Linux uses different system
call numbers on different architectures). Furthermore, as semantics are left to the
programmer, it is possible — indeed, all too easy — to construct inconsistent
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system call policies that deny some operations while allowing equivalent operations
to be performed. For example, the policy in Figure [SECCOMP-BPF] does not
allow unrestricted open(2) calls, but it permits openat(2), which can be made
to behave equivalently to open(2). A seccomp-bpf filter is intimately tied to
the details of the program whose behaviour it filters, making it the responsibility
of the application authors, but constructing a seccomp-bpf system call filter
requires meticulous attention to the sorts of details (assembly programming in
BPF opcodes, layouts and semantics of Linux kernel syscall handling structures)
that are entirely outside of most application authors’ experience and working
knowledge.

Beyond simple syscall whitelists, seccomp-bpf is both more complex and more
problematic. It is possible to construct seccomp-bpf filters on system call argu-
ments such as filenames, but as with GSWTK and systrace, it is impossible to
check paths meaningfully at the system-call handling layer. A program may be per-
mitted to access /var/tmp/*, but if /var/tmp/foo is a symbolic link that can be
updated in a race with the BPF filter, what policy has truly been enforced? The
openat example at https://github.com/trombonehero/sandbox-examples demon-
strates how a process restricted using seccomp-bpf can escape from its intended
bounds, in this case creating files outside of an application’s intended working di-
rectory.

For all of these reasons, seccomp-bpf alone is insufficient to truly sandbox arbi-
trary application code. A complete application sandbox must also use the Linux
clone(2) system call to sequester a process within a new IPC namespace (to cut
off access to the host’s global System V IPC namespace), network namespace (inter-
faces, routing, firewall, /proc and /sys/class/net, etc.), mount namespace (sim-
ilar to chroot(2)) and PID namespace (to cut off inappropriate uses of kill(2)).
Creating such namespaces requires the CAP_SYS_ADMIN privilege, which is effec-
tively equivalent to superuser privilege on Linux6. Thus, creating an effective ap-
plication sandbox on Linux requires running programs as root or creating setuid
binaries.

OpenBSD: pledge(2)

Since v5.9 was released in 2016, OpenBSD has shipped with pledge(2), a
mechanism for putting a process into a “restricted-service operating mode”7.
The manual page for pledge(2) does not describe it as a security mechanism
[Pled17], but other communications by its developers do [deRa15]. The essence

6The POSIX.1e draft standard [Pos1e] specified fine-grained superuser privileges called “capabilities”
such as CAP_NET_RAW, CAP_SETGID or CAP_SYS_ADMIN as decompositions of traditional superuser priv-
ilege. These “capabilities” are different from the traditional computer science definition of capabilities
[DV66], which are discussed below. The POSIX.1e draft was withdrawn and is not in force, but por-
tions of it have been implemented by various operating systems (e.g., FreeBSD’s audit implementation
and Linux’s “capability” framework).

7The previous tame(2) mechanism was introduced in v5.8 but not enabled by default.
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of pledge(2) is a simpler, more easily used take on the seccomp(2) concept.
Instead of defining a BPF program to filter out system calls, pledge(2) groups
system calls into categories such as stdio (which includes read(2), write(2),
dup(2) and clock_getres(2)) and rpath (which allows read-only filesystem
effects from chdir(2), openat(2), etc.). It is possible to make a pledge with the
empty string, in which case no further system calls but _exit(2) are permitted,
but this can result in processes aborting when atexit(3) code triggered by C
startup routines in _start() call mprotect(2) on libc.

pledge(2) is considerably simpler to use than equivalent seccomp-bpf function-
ality. Figure [USING-PLEDGE] shows an example of pledge(2) use that applies
a system call filter to the current process using more system calls than that of Figure
[SECCOMP-BPF]. However, as with seccomp-bpf, this simple, superficial filter-
ing of system calls provides illusive security guarantees. The provided system call
categories may usefully describe the requirements of trivial OpenBSD base system
applications, but for complex applications, categories such as wpath are effectively
meaningless. If an application needs to open private files for writing then wpath
must be “pledged”, but wpath also authorizes opening any file on the filesystem with
the correct DAC mode for writing. Unlike seccomp-bpf, pledge(2) makes pol-
icy construction simple, but like its Linux analogue, it makes the construction of
inconsistent or meaningless policies easy to do by default.

if (pledge("stdio rpath cpath flock", NULL) < 0)
{

err(-1, "error in pledge()");
}

Figure [USING-PLEDGE]: a system call filtering policy is considerably simpler to
install with pledge(2) than with seccomp-bpf.

The pledge(2) system call also takes a paths argument containing a whitelist of
allowable paths, but that functionality has been marked as “unavailable” in the
pledge(2) manual page since early 2016 [Pled17]. Were it available, the shallow
whitelisting functionality would suffer from the same TOCTTOU vulnerabilities
as systrace and seccomp-bpf. However, the greatest weakness of pledge(2) is
that a compromised process can disable the security mechanism if the original
pledge(2) call included the exec system-call category. Despite claims that “abili-
ties can never be regained” [Pled17] and “in OpenBSD, once a mitigation is work-
ing well, it cannot be disabled” [deRa15], pledge(2) does not have the one-way
property of seccomp(2) or capsicum(4). Whereas, in those systems, a process
that enters a restricted state remains there together with all of its subsequently-
created children, an OpenBSD process’ pledge(2)-restricted state is cleared on
exec(2).

As with seccomp-bpf (and GSWTK/systrace before that), system call filtering
with pledge(2) is insufficient to apply a meaningful security policy to applications
more complex than read–compute–write filters. The difference is that, although it
the simpler framework to use, pledge(2) is not backed by clone(2)-based mech-
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anisms for implementing more rigorous security policies. Thus, as with the now-
discontinued-by-OpenBSD systrace, pledge(2) should be seen as a debugging
and mitigation feature to catch unskilled adversaries rather than a rigorous mecha-
nism on which to build security policies.

FreeBSD: capsicum(4)

The Capsicum compartmentalization framework is different from seccomp-bpf
and pledge(2) in two key ways. First, Capsicum employs a principled, coher-
ent model for restrictions on processes when applications are compartmentalized.
This is implemented by Capsicum’s capability mode. Second, Capsicum employs
fine-grained, monotonic reduction of authority on specific OS objects accessed via
attenuated file descriptors, called capabilities.

Capability mode

Like seccomp-bpf and pledge(2), capsicum(4) supports putting processes into
a restricted mode in which system calls behave differently from “normal” processes.
The key distinction is how the restrictions are chosen. Rather than a superficial
focus on specific system calls, many of which have overlapping responsibilities and
provide independent means of accomplishing the same objective, Capsicum focuses
on a fundamental principle underlying them all: access to global namespaces.

In Capsicum, the cap_enter(2) system call causes a process to enter capability
mode, in which all access to OS objects (files, sockets, processes, shared memory,
etc.) must be done through capabilities (described below) rather than using am-
bient authority. Ambient authority describes the normal authority of a process to
act on behalf of its user, doing anything that the user is permitted to do by the
Unix DAC model. This includes access to other processes via PID, files via path
or NFS file handle, sockets via protocol addresses, shared memory via System V
IPC name or POSIX shared memory path, etc. By contrast, a process in capability
mode is not allowed to access any new resources via global namespaces (path, PID,
protocol address, etc.). Resources represented by already-open file descriptors (or
descriptors passed into a process via Unix message passing) normally, subject to
restrictions described below (under “capabilities”). New file descriptors may also
be derived from existing descriptors using system calls such as accept(2) or even
openat(2), provided that only local names are used. In the case of openat(2),
this requires that path search start relative to an already-open directory descriptor,
not AT_FDCWD, and that path evaluation only traverse “down” inside a directory and
not “up” via "..". This restriction on path lookup is enforced within FreeBSD’s
namei() function, deep within the kernel and atomic with the lookup being po-
liced.

The policy enforced by Capsicum’s capability mode is internally consistent, as it
is based on a fundamental principle rather than shallow system call syntax. It
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can enforce the same restrictions as the limited, internally-consistent use cases of
seccomp-bpf and pledge(2): if a process enters capability mode with no resources
held but readable/writable file capabilities, no side effects can be caused on the
system except those described by the descriptors. To enable more sophisticated
behaviours, Capsicum provides capabilities to facilitate principled sharing of re-
sources within a coherent security model.

Capabilities

The historic concept of a capability in computer science is that of an identifier for
an object combined with operations that can be performed on it. This sense of
the word was described by Dennis and Van Horn in the late 1960s [DV66], and
its echoes can be heard in Unix today. In Dennis and Van Horn’s conception, a
capability was an index into a list of capabilities maintained by the supervisor on
behalf of a process. This concept carried forward into Multics and then morphed
into the file descriptor as we know it today in Unix [RT78]. Like the capabilities
of the previous decade, file descriptors are indices into a supervisor-maintained list
of OS objects; they are also associated with operations that may be performed on
them based on the flags they were opened with (e.g., O_RDONLY). Unlike capabili-
ties, however, file descriptors carry unexpected, implicit authority with them that
cannot be monotonically reduced. For example, an application cannot open(2) a
descriptor with flag O_RDWR, dup(2) it, commute the new descriptor to a read-only
descriptor and share it with an untrusted worker process. Even when a file descrip-
tor is opened read-only, the Unix DAC model will still system calls like fchmod(2)
to — perhaps unexpectedly — manipulate file metadata.

Capsicum’s implementation of capabilities provides for the monotonic reduction
of fine-grained rights (“authorities”) on specific objects. It does this by attaching
rights to descriptors such as CAP_READ, CAP_FSTAT, CAP_MMAP, CAP_FCHMOD, etc.
These classes of behaviours correspond to methods on kernel objects and are re-
lated to sets of system calls that require them. For example, to open a read-write
file relative to a directory with openat(2), that directory descriptor must have at
least CAP_READ, CAP_WRITE and CAP_LOOKUP enabled for it. Outside of capability
mode, unsandboxed processes using ambient authority with system calls such as
open(2) are returned file descriptors with all rights implicitly granted. This pre-
serves compatibility with traditional Unix semantics while allowing for uniform
enforcement of capability rights both inside and outside capability mode. Rights
on descriptors can be attenuated using cap_rights_limit(2), descriptors can be
inherited by or passed to sandboxed processes and new descriptors derived from ex-
isting ones (e.g., via accept(2) or openat(2)) derive their rights from their parent
objects. This allows delegation with confidence.
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Sandboxing with Capsicum

Capsicum allows application authors to apply rigorous security policy to their ap-
plications with — in some cases — a minimum of effort. Today, even moderately
complex applications such as hypervisors and Web browsers can support rich use
cases by opening resources (including resource-bearing resources such as directo-
ries and server sockets), limiting the rights associated with those resources and then
entering capability mode. The work required to sandbox the bhyve hypervisor in
this way is shown in Figure [BHYVE]. Efforts are ongoing to make the Capsicum
model applicable to broader classes of applications, including applications that re-
quire access to external resources such as powerboxes [Yee04], even when they are
oblivious to sandboxing features [AGW17].

if (lpc_bootrom())
fwctl_init();

+#ifndef WITHOUT_CAPSICUM
+caph_cache_catpages();
+
+if (caph_limit_stdout() == -1 || caph_limit_stderr() == -1)
+ errx(EX_OSERR, "Unable to apply rights for sandbox");
+
+if (cap_enter() == -1 && errno != ENOSYS)
+ errx(EX_OSERR, "cap_enter() failed");
+#endif

/*
* Change the proc title to include the VM name.
*/
setproctitle("%s", vmname);

Figure [BHYVE]: only minimal code changes were required to add Capsicum sup-
port to the bhyve hypervisor. caph_cache_catpages() pre-opens a directory,
caph_limit_std{out,err}() limits the rights held on stdout and stderr and
cap_enter() enters capability mode.

Starting from a rigorous foundation, Capsicum is a platform that can support com-
plex behaviours. Since its security policies are both simple and coherent, applica-
tion authors can build supporting services on this foundation without requiring
expertise in kernel internals or the fear of constructing an incoherent security pol-
icy. We therefore see Capsicum as a generative platform that enables application
authors to focus on what they do best, using rigorous security-enabling tools with-
out requiring extreme security expertise. It is our hope that providing authors with
tools for safe software construction will enable future applications to better protect
users, not just from each other, but from their own applications.
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