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About the Book

This book is intended for practising engineers, researchers, graduate and under-
graduate students who are interested in the kinematics of planar mechanisms.

The mateiral presented is the outcome of several years of research, teaching and
industrial experience. The computational efficiency and accuracy have been very important
in the field of kinematics of robotic manipulators which have inspired the authors to apply
similar principles to the planar linkages also. There are plenty of discussions and
explanations using the graphical technique also, without which the authors believe, any
treatment of kinematics would be incomplete. Since the solution of problems require
enormous computations, a special software has been developed for this purpose to be used
on micro-computers. These can be obtained from the first author at a reasonable cost.

Numerous problems have been solved throughout the text to illustrate various
concepts. The rotational transformation matrices have been used to transform velocities and
accelerations from one coordinate system into another. The concept of guided and guiding
links have been introduced for setting up of the secondary coordinate system in the
calculation of the Coriolis acceleration which the authors recognize as one of the very
difficult concepts to teach in the class.

Finally, the computer software has been organized in a modular form; thus it does
not serve as a black box where the users only see the inputs and outputs. They do not see
how a problem has been solved. In fact, in using this software, they are continuously
involved in solving problems; only the number crunching work is left to the computer. This
makes this software very versatile and especially suited to the students who must know how
to solve problems. The software should not give them the solutions.
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" In the beginning, there was neither nought nor aught.
Then there was neither sky nor atmosphere above.
What then enshrouded all this universe ?

In the receptacle of what was it contained?

Then was there neither death nor immortality,

Then was there neither day, nor night, nor light

nor darkness,

Only the Existent One breathed calmly, self Contained. "
( Rig Veda 10.121.1)
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PREFACE

This book is being written at a time when computers and robots have made
tremendous advancements in the manufacturing and design processes. Even though the
design of robotic manipulators require the three-dimensional kinematic analysis, yet the
concepts developed in the planar analysis are of immense help in designing these
mechanisms. This book has been exclusively written about the kinematic analysis of linkages
where analysis of cams are also included. It is felt that, with the principles discussed in this
book, one can carry out the design of most of the planar machineries.

The authors having spent numbers of years in the industries as well as in the
universities, felt the need for a computer software. This is because, a design process
involves a number of feasible solutions, and in kinematics, because the parameters involved
are vectorial in nature, require a large number of calculations. There are sophisticated
programs available in the market but the beginners see these as black boxes, which is very
undesirable. Therefore, with a great deal of effort, a software was developed and tried out
in the classroom including in the final examinations; the students were allowed to use the
software in these examinations. In this way, the painful task of number crunching was left
to the computer to do. Actually, it is the concepts which are most important.

In Chapter 1, the basic concepts of mechanisms are discussed, followed by the
displacement analysis in the Chapter 2. The solutions of planar vector equations are
discussed in great details in this chapter and these solutions have been extensively used to

solve problems in the velocity and acceleration analyses in the later chapters. The

(viii)



Geometrical Method for solving these planar vector equations has been introduced in this
chapter. The use of the computer software is also discussed in this chapter.

In the Chapter 3, a distinction has been made between the difference of velocities
of two points which are, in the first case, located on the same rigid body and in the second
case, not on the same body. The second one, relative velocity as is commonly known, is
termed as the apparent velocity of one point with respect to the other in this book. This
concept is later on helpful in determining the Coriolis acceleration. The graphical method
is also quite extensively discussed in this chapter and throughout the book. We hold the
opinion that the analytical calculations must be checked out graphically first. It has also
been our experience that the concepts are grasped much easily by the graphical method by
the students. The analytical method will yield better accuracy but it will come only after
some experience. The velocity analysis of mechanisms has been discussed using, (a) link-by-
link method and (b) the instantaneous center method.

Chapter 4 deals with the acceleration analysis. The equations of motion of a point
are derived by a differentiation process relative to a fixed coordinate system. Next, the
general equations i.e. acceleration of a point relative to a moving frame are also derived.
The relationships between the apparent velocity discussed in the Chapter 3 and the Coriolis
acceleration are established using a moving slider on a rotating link. Setting up of the
secondary coordinate system, the path of a point and its curvature, are important aspects in
the determination of the absolute acceleration of a point. The concept of a ‘Guided Link’

and a ‘Guiding Link’ are introduced to calculate the Coriolis term correctly.

(ix)



In this book, wherever possible, the analytical expressions have been simplified and
special effort has been made to reduce the computations involved. Even without the
computer software, if the approach discussed in this book is followed, the calculations can
be performed quite efficiently. The computer software adds to the efficiency and accuracy,
a fact which the readers can verify by solving problems.

The authors wish to acknowledge the help with thanks of Narendra K. Sinha, Sudhir
Kumar, Rajeeve Bahree, Sarah Prabhakaran, Jinesh Jain, Charles Dhanaraj, Parveen Kalra,
Bhimavarapu S. Reddy, Manoj Tummala, Rama K.P. Koganti, and Rama K. Vallurupalli
in the preparation of the software, drawings and the typing of the manuscript. The authors
are specially thankful to the Dean of the Faculty of Engineering at Memorial University, Dr.
G.R. Peters, for providing the excellent computing facilities which were necessary to
complete this work. The authors feel thankful to the NSERC Canada which has provided
research grants in the areas of robotics and machine tool dynamics. The concepts evolved
through the research work were very useful in the development of the approach used in this

book.

Anand Mohan Sharan

Rao V. Dukkipati
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CHAPTER 1

INTRODUCTION TO MECHANISMS

1.1 Basic Concepts in Mechanisms and Machines

The human civilization has used mechanisms for thousands of
years. The purpose of a mechanism is to transfer motion whereas, a
machine is an assembly of several members to do the work. An
example of a mechanism is shown in Fig. 1.1 and it is called a
crank-slider mechanism. This type of mechanism is wused in the
engine of automobiles. The slider is pushed forward in the power
stroke of the engine. As the slider moves forward, it rotates the
crank thus turning the crank shaft. 1In this way the reciprocating
motion of the slider is converted into the rotary motion of the

crank shaft. Fig 1.2 shows the application of four-bar mechanism

CONNECTING ROD

SLIDER

\\\\\ﬁ

M., \\

FIG. 1.1 CRANK SLIDER MECHANISM
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FIG. 1.2 A FOUR BAR MECHANISM USED AS PRINTING MECHANISM
IN AN ELECTRIC TYPEWRITER



as a printing mechanism in an electric typewriter to transmit

motion from one shaft to another. The typist presses a Kkey lever

which engages the cam with the power roll. The power roll is

driven by an electric motor, and the cam is pivoted at point C on

the cam lever. Consequently, the power roll drives the cam, and

the cam in turn, drives the cam lever. The cam lever, marked as

link 2 in Fig. 1.2b, drives the type bar, 1link 4, to print
through link 3.

The crank slider mechanism shown in Fig. 1.1 can be thought
of as made of a fixed link, a <crank, a connecting rod and a
slider. During its performance, except for the fixed 1link, all
other links undergo either a translatory or a rotary motion. All
mechanisms have at least one fixed link. If all the 1links are
fixed then it would be called a structure 4 rather than a
mechanism.

Mechanics is a science dealing with motion, forces, time, and
is divided into two parts, statics and dynamics. Further
sub-divisions of dynamics is shown in Fig. 1.3. Kinematics deals
with motion such as velocity, acceleration etc. without any
information about forces which cause such motion. In kinetics we
study both the motion as well as the forces. It should be
remembered that the sub-division of dynamics into kinematics and
kinetics is based on the assumption that the body is rigid i.e. it
does not deform. It implies that the distance between various
points on the rigid body on the rigid body does not change during
the motion of the link. We will investigate this fact further in
the next chapter on the position analysis. If the body is
flexible rather than rigid then the motions of various points will

3



MECHANICS

STATICS DYNAMICS

KINEMATICS KINETICS

FIG. 1.3 CLASSIFICATION OF MECHANISHM

depend on the forces applied. Therefore, this type of study is
quite involved and is not a subject of study in this text. All
real bodies are flexible to some degree but the deflections can be
reduced while designing a machine or a mechanism component by
varying geometrical parameters. In actual practice, one can carry
out the kinematic analysis with the rigid body assumption and then
perform the dynamic analysis in such a way that the deflections
are kept to a minimum so that the rigid body assumption in the
kinematic analysis is justified.

A mechanism consists of several linkages which are connected
by joints such as pins or prismatic joints to form a closed or
open-loop chain. Such chains are called mechanisms where, at

4



least, one link is fixed called a frame and at least +two other
links are mobile. Clearly, in a mechanism relative motions
between various links are possible and these motions depend upon
the types of connections between various 1links. Some of these
types of connections are shown in Fig. 1.4. The joint between

crank and the fixed link is called a revolute or a pinned joint.

A8

H8
As
(o)
08
>
———

(b)
{d)
~——
Dx

($3}

(e}

FIG 1.4 THE SIX LOWER PAIRS: (s) REVOLUTE OR PIN, (b) PRIS
(d) CYLINDRIC, (¢) SPHERIC, AND (f) PLANAR. (b) PRISM, (c) HELICAL,



In a revolute joint, if one member is fixed then the other can
rotate in a plane. The joints shown in Fig. 1.4 are idealized
ones. The nut and bolt pair can be thought of as a helical joint.
The type of a pair can be determined from their nature of the
geometrical contact. The lower pairs have area contact whereas,
the higher pairs have line or a point contact. An example of a
lower pair is a shaft rotating in a bushing. Similarly, the
rolling of a cylinder on a flat surface can be called as a higher
pair. A mechanism where motions of various links occur in a
given plane or in parallel planes is called a planar mechanism.
In such cases the exact locations of various points can be seen
from a direction normal to these planes. A mechanism where
all the displacements can not be seen in their true shape from
one view would fall into the category of a spatial mechanism.
A few other concepts which are necessary to understand
kinematics are inversion and mobility. The absolute motion of
various links is dependent upon which of the link is fixed. The
absolute motion of the links change if there is a change in the
fixed link but the relative motion does not alter due to this
change. The mechanisms obtained due to fixing of different 1links
one at a time are called the kinematic inversions of each other.
This is shown in Figs. 1.5 and 1.6.

In Fig. 1.5 the smallest link always rotates through 360 ,
and depending upon its location with respect to the frame, the
four inversions are obtained. In all the four cases the Grashof’s
criteria: s+L < p+q is satisfied where s and . are the shortest
and longest links respectively; the other two are intermediate
links. If s+L > p+gq four double-rocker mechanisms are obtained

6
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FIG. 1.6 VARIOUS INVERSIONS OF SLIDER CRANK MECHANISM

(a) CRANK SLIDER MECHANISM
(b) ROTATING SLIDER MECHANISM
(c) OSCILLATING SLIDER MECHAMISM

(d) STATIONARY SLIDER MECHANISM



based on various links being used as frames. If L+s = p+g then we
would have mechanisms as shown in the Fig. 1.5 but the center
lines of all links become collinear and the output link may change
its direction of rotation unless an additional guidance is
provided. Fig. 1.6 shows various mechanisms as a result of the
inversion of the crank-slider mechanism. All of these mechanisms
are quite useful. The number of degrees of freedom of a given
mechanism are the number of independent parameters required to
specify the given configuration of the mechanism. For example,
Fig. 1.7a shows a four bar mechanism which has a fixed 1link or a
frame (link 1). 1In the configuration shown if the angle between
the crank and fixed link is given then, the other two links can be
assembled in an alternate way also as shown in Fig. 1.7b i.e. the
other two links can be assembled in two different configurations.

The mobility, M of a mechanism can be arrived at by subtracting

CONNECTING ROD

A FOUR BAR MECHANISM THE ALTERNATE ASSEMBLY

FIG. 1.7 AN ALTERNATE ASSEMBLY OF A FOUR BAR MECHANISM



the number of constraint equations (c) from the total degrees of
freedom (N) which can be written as

M=N-C (1.1)
N of a planar mechanism is equal to 3 x n where n is the total
number of links in it. Here n has been multiplied by 3 because a
link moving in a plane can have freedom to move along X, and Y
axes and also rotate about the Z axis. Now let wus consider the
four bar mechanism which has 4 links out of which one 1link is
fixed. N in this case is 4x3 = 12. Since one of the 1links is
fixed therefore it loses 3 degrees of freedom. There are four
pinned joints each of which allows only one degree of freedom i.e.
it imposes two constraints per Jjoint. Thus there are 8
constraints. Since we have already subtracted 3 constraints from
the total degrees of freedom, therefore, in the case of four bar
mechanism we would have

M=3x4-(4x2 + 3) =1
The general formula for mobility of a planar mechanism can be
written as

M=3%*n-(n *1+n, *2+3) (1.2)
where n and n, are the number Jjoints imposing 1 and 2
constraints respectively. The number of constraints imposed by a
joint can be judged from Fig. 1.4. A rolling contact (without

sliding) permits one degree of freedom due to the rotation

whereas, if there is sliding also, then there will be two
degrees of freedomn. The additional one comes from the sliding
action.

Fig. 1.8 shows various types of mechanisms and a structure.
As discussed earlier the degrees of freedom of a joint in a planar

10
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FIG. 1.8 MOBILITIES OF VARIOQUS MECHANISMS
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mechanism is equal to 3-n where n 1is the number of constraints
imposed by the joint. A single degree of freedom joint will have
n = 2 and a two-degree-of-freedom joint, equal to 1. To find out
the mobility or the number of independent parameters to specify a
mechanism one should, (a) first of all count the number of 1links
and then inspect all the connections or joints one by one, (b)
classify the joints by referring to Fig. 1.4 and, (c) use Eq. 1.2.
For example, let us consider the mechanism shown in Fig. 1.8b.
There are four links (n=4), three pin or revolute joints and one
sliding joint. All are single-degree-of-freedom Jjoints (n =4);

there are no two-degree-of-freedom joints (n1 =0) .Now we use Eq.

1.2:

M=3 x4 - (0x1+4x2+ 3) =1

Let us examine the mechanism in the Fig. 1.8f. There are
four links here also. There are 3 revolute Jjoints and one
rolling contact (it has one degree of freedom). If we use the Eq.

1.2, we will have M = 1. If we inspect Fig. 1.8e we would find
that it too has M = 1. What happens if there is a rolling contact
instead of sliding contact between links 2 and 3? If we
reduce the mobility by one we will obtain a structure as in
Fig. 1.8a. A rolling contact is like a ©pinned connection
which allows one member to rotate about the other. Eq. 1.2 is

also called the Kutzback criterion for the mobility of a planar

mechanism. If M = 0, we have seen that it is a structure. If by
using Eq. 1.2, we get M = -1 or less, then there are redundant
constraints acting and the structure is called a statically

indeterminate structure.
In the application of the Kutzback criteria one can notice

12



that there is no consideration for the link dimensions or their
relative orientations. Therefore, in certain situations, one does
not obtain the correct number for the mobility. For example, Fig.
1.9 shows two mechanisms. In the mechanism in Fig. 1.9b, the link
5 is parallel to the link 3. It is a double parallelogram linkage
with M = 1. The link 5 in Fig. 1.9a is not parallel to the 1link 3
thus making it immobile i.e. M = 0. Even though there are
exceptions in determining the mobility using the Kutzback criteria
yet, it is of immense value because in the early part of the
design stage no one knows the exact dimensions of various links or

their orientations.

e”/j/////n
3
\-"
2 2 4
S 1
(a) (b)

(a) FIVE LINK MECHANISM

(b) DOUBLE PARALLELOGRAM

FIG. 1.9 FIVE LINK MECHANISM AND THE KUTZBACK CRITERIA
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CHAPTER 2

DISPLACEMENT ANALYSIS OF MECHANISMS

2.1 Position Vector and its Mathematical Representation

The first and foremost task in analyzing the motion of a
particle or rigid bodies 1is to carry out the displacement
analysis. To understand the motion of rigid bodies one has to
first understand the motion of the various points on this body.
In general, the motions of different points on a rigid body are
different. Therefore,to analyze motions of various particles on a
rigid body these could be thought of as points. The concept of
motion of a particle arises from the displacement history of the
particles i.e., to observe a motion, first of all one should
observe the locations of the particles with respect to certain
fixed coordinate system. To make the matter simpler, let us say

the coordinate system is defined in a plane and we are assuming

that the particle’s motion is confined in this plane. The curve
traced by the particle is shown in Fig. 2.1. If we join the
Y

|

Q/ .

FIG. 2.1 POSITION VECTOR OF A POINT P

B



origin to a point P and consider it as a vector then we can call
it a position vector of the particle at that instant of time.
Therefore the position vector of a particle is a vector starting
from the origin and terminating at the location of the particle at
that instant of time.Just like any other vectors, the position
vector has a magnitude and direction. The magnitude in this case
will be the distance between 0 to P, and to represent the
direction, we need to know the angles between the vector OP and
the X and Y axes as shown in Fig. 2.1. We have to use a
convention to define the directions. The convention is that the
angles must be measured counter-clockwise from the respective axes
as shown in Fig.2.1. The position vector in three-dimensional
space is shown in Fig. 2.2. The three angles in this case can be
truly seen by observing perpendicular to three different planes.
The first plane can be defined as that containing the X axis and
OP. Similarly, another plane will contain the Y axis and the line
OP. These are shown in Fig. 2.2. Besides these angles, one needs
to define the unit vectors and specify the scale used. To explain
the concepts, let us take an example of a force equal to 100
Newtons (N) acting on a particle of mass 10 kg. The example of a
force is being used because we are familiar with it. It is a
vector quantity and we want to represent it graphically. Suppose
we also know that the force makes an angle of o = 45° from the X
axis. In the two dimensional space if we know the angle from the
X axis then the angle B from the Y axis can be calculated using
the formula

B = (a - 90) or (270° + a) (2.1)

= 315°

15
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In other words, out of a and B, only one of them is an
independent parameter. To represent the magnitude we need to
define the scale. Suppose we represent 10 N by 1 mm then this
force will be represented by a line 10 mm long which is at o’ from
the X axis as shown in Fig. 2.3. The unit vector, 1N, will be
represented by a line 0.1 mm along the X or Y axes. The unit
force vectors along the X and Y directions are symbolically
represented by i and j respectively. Both of these vectors have
the same magnitude equal to 1 N.

The position vector at P will be represented by R,, where it
is understood that the tail of this vector is at 0 and the tip at
P (refer to Fig. 2.1). We can also have a unit vector in the
direction of R.Po and it will be represented as ﬁpo. The carat
symbol above a letter will always represent a unit vector. Since

it is a unit vector its magnitude will be equal to unity. Let

<

FIG. 2.3 POSITION OF A POINT P
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|R or RPO represent the magnitude of the vector RPO, then RP

PO' o

can be obtained by

R
o - PO — PO (2. 2)
| R | R
PO PO

Rpo can also be expressed in terms of its components along

the X and Y directions as

R =R i +R J
PO PO PO
This vector can also be expressed in a polar form as RPO = RP /o

where the angle o is measured in the counter-clockwise manner from
the X axis. The mathematical representation of the vector in terms
of a will be
RPO = RPO Cosa 1 + RPO Sinx 3
= R__Cosa i + R Cos(90°-a) )
PO PO
= RPO Cosa 1 + RPD CosfB Jj (2.3)
It has been shown here that if we know the magnitude of a

vector and the angles made by this vector from the coordinate axes

measured in the counter-clockwise manner then we can represent the

A
vector shown in Eg. (2.3). Thus the unit vector RPO using Egs.
(2.2) and (2.3) will be given by

R = Cosa i + Cosg j (2.4)

PO

This relationship shows that once we know the magnitude and
direction of a vector then the expression for its unit vector is
automatically known. Sometimes Cosa and CosB are also referred to
as the direction cosines of the vector. In the two dimensional
space, only one direction cosine is needed, the other can be
calculated using it, and in the three dimensional space there are
three direction cosines. Suppose these are called Cosa, CosB, and
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Cosy, then only two of them are independent and the third can be
calculated using the relationship

Cos’a + Cos®B + Cos®y = 1 (2.5)
For the two dimensional space the corresponding equation will be

cos’a + Coszﬁ =1 (2.6)

It should be added here that between 0° to 3600, the arc

cosine function is a double valued function, therefore, it
requires an additional effort to know the correct value of the
unknown angle 1if we use Eg. (2.6). For example, let us assume
that for a vector we have « = 300, then we can write

Cosz30 + CosZB = 1

Therefore,

cos™ (tV{ - cos®30)

™
I

= cos™’ (:/1 - (0.866)7)
= Cos™' (%0.5)

We will obtain two values which are 60° or 300° corresponding
to 0.5 because the cosine function is positive in the first and
fourth quadrants. If we also check the value of B using Eq (2.1),
we will find that B = 300° is the correct solution. There is no
ambiguity in wusing Eq (2.1). Similarly there are two other
solutions corresponding to the negative value which we are not
seeking.

Fig. 2.4 shows the path of a particle at various instants of
time. At any instant of time we must know the X and Y components
of this vector to define it completely. Alternately, we must know
the magnitude and the angle of this vector with respect to the X

axis. During its motion the X and Y components of the position
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