vector will be a function of time. To specify the position vector

we must know each component as a function of time i.e., either

R* = £ (t) , and

PO
(2.7)
Y
RPO = fz(t)
or
RPO = fz(t) , and
« = £ (t). (2.8)
Y
4 ............ { _____________ P(t=t))
y |
R, B E
N Y A S P(t=t,)
Ry R A :
‘ : :
0 . 5 —— X
RX ! !
B :
RX 5
—g— —

FIG. 2.4 POSITION OF A POINT P AT TWO INSTANTS OF TIME
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2.2 The Position Difference Between Two Points, Apparent

Position, and Absolute Position of a Point.

The position vectors of two points P and P, are shown in Fig.

2.5. The position difference vector R, . is the vector difference
1

of the vectors R, , and R, o+ It is represented by the equation
R = R - R (2.9)

P_P P 0 P O
2 1 2 1

Remember that this is a vectorial equation which can be solved

either graphically or analytically. In Fig. 2.5 the sum of the

vectors RPlo and RP P1w111 be equal to RPZO. Therefore, szp1ls a

vector difference vector. RP , and R, o represent the position
2 1
vectors of two points P, and P, which indicate the positions of

these points with respect to the origin whereas the position

FIG. 2.5 POSITION DIFFERENCE VECTOR
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difference vector R specifies the position P, relative to P.
2 1

This is a useful concept because, quite often, one is interested

in knowing the relative position only rather than the position

with respect to the origin. As an example, suppose P and P,
represent the locations of the down’towns of two cities. A man
wants to go from P1 to P2 by car. If he knows, (a) the distance

between these two points and (b) the angular direction with
respect to whatever coordinate system he chooses to define his

orientation, then he can reach his destination in a precise

manner.
Let us say, we have vectors R, = 20i + 15j and R, = 10i + 43
2 1
then
RP 1= RP 0o RP o = (201 + 153) - (101 + 43j)
= 10i + 11j
= 14.866 /(a = tan '(11/10))

14.866 /(a = 47.726°)

A word of caution is in order here regarding the angle
47.726°. Actually, there will be another value 180° apart from
this solution which will correspond to tanq(-ll/-IO). Some of
the calculators can not distinguish between the two. There are two
ways to avoid this difficulty. In the first method, calculate the

magnitude of R, which in this case will be given by

2 1
=v 10° + 11? = 14.866

Only the positive sign should be used because the magnitude
can not be a negative quantity. Consider 14.866 as the hypotenuse
of a right-angled triangle as shown in the Fig. 2.6. The Sina and
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" 1"

-1

FIG. 2.6 DETERMINING THE DIRECTION OF A VECTOR

Cosa values will be 11/14.866 and 10/14.866 respectively. Both of
these values are positive; therefore, «a has to be less than 90°.

Now let us take the case of R, = -10i -11j. R, . in this
2 1 2 1

case also will be equal to 14.866 but Sinx and Cosa

correspondingly will be =-11/14.866 and -10/14.866 respectively,

both of which are negative. The angle a in this case will be in

the third quadrant.

Therefore, the procedure to obtain the correct « would be
divided into two steps. 1In the first step, calculate o« assuming
the coefficients of i and j as positive. The magnitude IRP b | is

2 1
always positive. This will yield «. In the next step check the
signs of the ratios for Sina and Cosa. Four possibilities exist
and the solutions corresponding to each of these possibilities are
given below:

(a) If Sina and Cosae both are positive then « remains
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unchanged.Use a = o (2.9a)

(b) If Sina is positive and Cosa is negative then

a = 180° - o (2.9b)
(c) If Sina and Coso are both negative then

o = 180° + o (2.9¢)
(d) If sina is negative but Cosa is positive then

a = 360° - o (2.9d)
The procedure is illustrated in Fig. 2.6.

In the second method we calculate sina and Cosa first. For
example, if R . = 10i -11j then Sina = -0.740 and Cosa =

2 1

0.673. Then calculate Tan «/2 using the formula

1 - Cosua (2.10)

Tan «/2 = Sina

I

(1-0.673)/(~-0.740)
= ~-0.44189

The angle «a/2 in this case is equal to —23.8400, so a will be
equal to -47.6800, i.e., the angle has been measured clockwise
because of the negative sign. Whenever we get negative angles we
should add 360° to it to make it counter-clockwise. Therefore, it
becomes 312.32° counter clockwise. The principle in this method
is that if « is in the first or the fourth qguadrants then these
calculators will give correct results. The problem of a occurring
in the second or the third quadrant is resolved by taking half
their values so that «/2 will be in the first or fourth quadrants.
The quadrants can be seen in Fig. 2.6. In these two quadrants,
the calculators or computers yield correct angles without any
ambiguity. For example, if o« is 120° then using this procedure,
/2 value will be 60° and it can be correctly calculated.

24



Similarly if a is equal to 260° i.e., this angle is the same as
-1000, therefore, «/2 will be -50° which is in the fourth
quadrant. In this way one can resolve these types of problems
while using calculators or computers. The angle o of vectors, not
passing through the origin, can be easily seen by drawing another
set of coordinate axes (X’-Y’) parallel to the reference
coordinate axes as shown in Fig. 2.7. If the scale in this new
set of axes is the same, then the unit vectors i‘, j’, and k’ will
be equal to i, j, and k respectively, because the magnitude of any
of these vectors of the two sets are equal to 1. The conversion
of vectors defined in two different set of coordinate axes which
are not parallel requires a bit of explanation. First we define

another set of axes parallel to (X-Y) which is shown as (x1 —YJ

Y
I K
p
i ,
o i X
T
J
0 :{ - X

FIG. 2.7 DIRECTION OF A VECTOR P WITH RESPECT TO ANOTHER SET OF

PARALLEL AXES
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in Fig. 2.8. The coordinate of point P in the (X1 —Yl) system
having coordinates (10,4) in the (X-Y) systems, will be xf =
(10-2), and Yf = (4-3) where the point 01 has coordinates (2,3)

with respect to (X-Y). 1In the second step we find out X: and Y:

using equations

o

Cos6 X, - Sino Y

>
It

+ Cos6 Y

P
; } (2.11)
1

P
1
P
1

N TN

Sine X

The two equations can be written in a matrix form as

xg Cosé -sine xf
= (2.12)
P . P
Y2 Sine Cos#@ Y1
Y
Y, .F
YZ
Xa
O > =X,
0 — X

FIG. 2.8 POSITION VECTOR IN X-Y AND XIYICOORDINATE SYSTEMS
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In Eq. (2.12), the coordinates have been written in a vector forn
and the matrix on the right hand side is called a rotational
transformation matrix because it relates two vectors due to the
rotation of the coordinate systen. To use such rotational
matrices the origins of the two sets must be coincident.

Substituting the numerical values corresponding to 6 = 20° we get

X Cos 20 ~-Sin 20 8 7.176

i

Vol Sin 20 cos 20{] 1 3.676

If we know a vector in the (Xz— Y2) coordinate system and
would like to know it in the (X - Y) system then we can use the

same procedure as before. In this case we will have

X Cos 340 -Sin 340 7.176 8.0

4 Sin 340 Cos 340 3.676 1.0
and then we can get X’ = (8+2) and YP= (1+3) by shifting the
origin from O, to o. The angle 340° is used above because the

axis X is obtained by rotating X, by 340° in the ccw direction.

So far we discussed how to calculate the position vectors in
two different coordinate systems which can have same or different
orientations and their origins may or may not coincide. Once we
obtain the position vectors then the position difference vector
can be calculated by taking the difference of the two. If we
consider one of the coordinate systems as absolute then the
vectors defined with respect to all other coordinate systems will
be called apparent vectors. It is a matter of arbitrary selection
which one we call the absolute coordinate system. But once one of
them is selected as an absolute, then the rest of them are
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referred to as apparent systems.
If an apparent position vector (refer to Fig. 2.8) is known
then the absolute position vector can be calculated using the

equation

R =R + R (2.13)
PO 0o PO,

In the example we discussed just earlier, this would be
X" 2.0 Cos 340 -sin 340 7.176

Y 6.0 Sin 340 Cos 340 3.676

Here, we were Jjust interested in calculating the X and Y
coordinates of the point P in the absolute coordinate system.

Once we know them then we can represent as Rm>

R =x1+ Y5
PO

In Eq. (2.13), we know the apparent position vector R, . the
1

coordinates of the origin of (X2— Yz) system and the orientation
of (Xz— Y)) system. Once we have all this information then we can
convert all apparent vectors to absolute vectors. The usefulness
of this concept can be understood if we take an example of three
satellites in the equatorial plane at an angle of 120° apart. If
they move in an orbit sufficiently away from the earth then they
can locate any object on the earth and relay the information to
each other or back to the control station on the earth. For
communications, they must be in the line of sight with each other.
The coordinate system on the earth (control station) can be
considered as absolute and the rest as apparent. This concept
becomes quite useful if the objects can not be seen from the
absolute coordinate system then one can use an apparent system
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provided the location and the orientation of the apparent system
relative to the absolute system is known.

If the position vectors are defined with respect to the
absolute coordinate system then we will denote R.PO as RP for a
point P. In general, we will use (X-Y) system as the absolute
system and the number 0 (zero) will be used with it and all other
systems as apparent and denoted by higher numbers. Eq. (2.13), in
the new notation, will be

R = R + R
P/0 0,070 P/2

All the position vectors will have only one subscript and the

position difference vectors, two. For example R, . 6 will denote
2 1

the position difference vector from P to P, and defined in the

absolute coordinate system. If no number is typed, for example

R ,then it is understood that it is a vector in the absolute

coordinate system. Thus RP ; R , and RP would mean the same

0/0 PO

vector.
2,3 Position Analysis of Mechanisms

There are several methods available to find the position
vectors of various points in a mechanism. The easiest and
conceptually the simplest method is the graphical method. The
points in the planar mechanism move in a plane or parallel planes.
Therefore, the correct relative locations can be observed in a
view which is observed from the normal direction to these planes.
Depending on the problem, the position analysis of mechanism may
require a solution of a vector equation which may have two
solutions. A two-dimensional vector equation can be solved for
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two unknowns. We have seen earlier that it requires two
quantities to define a vector which can be either its magnitude
and direction or its X and Y components. Suppose A is a vector
whose magnitude is known but the direction is unknown. We will
use a Symbol Vv for known and * for unknown; thus we can represent
A as X‘. The analytical method of addition and subtraction of two
vectors has already been discussed earlier and the graphical
representation is shown in Fig. 2.9. There are three vectors A,
B, and C is this figure. If there are more than three vectors in
an equation then we can always combine them into three. For
example, we are given the equation

) QI AN A 44 (2.14)
to be solved. Here, the vectors L, N and P are completely known

and can be replaced by a vector g“. Then the equations will be
& = + ¥ + ¥ ang

* - ¥ . & (2.15)
Let év = —ﬁv ’

then we can write

TAS G 14 (2.16)
If we can solve Egq. (2.16) to obtain B then the magnitude of M
will be equal to the magnitude of B but it will be opposite in
direction. The Eq. (2.16) is in a standard form and depending
upon the types of unknowns, it has been classified into four cases
by Chace’ The four cases are summarized below:
Case 1 Magnitude and direction of the same vector are the

unknowns. For example

+M. A. Chace, Vector Analysis of Linkages, J. Eng. Ind. Ser. B.,
Vol. 55, No.3, pp. 289-297, Aug. 1963.
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Case 2a

Case 2b

Case 2c

& =XV + B (2.17)

The magnitudes of two vectors are unknowns as
represented by

AN A A A4 (2.18)
The magnitude of one and the direction of the other are
the unknowns. The equation for this case will be

A R (2.19)

The directions of two vectors are the unknowns, and the

corresponding equation will be

A G (2.20)

To solve the case 1 graphically, the procedure is the same as

in Fig. 2.9. It is a simple case of vector addition. The case 2a

can be solved using the following steps as shown in Fig. 2.10:

(a) {(b)

FIG. 2.10(a) VECTOR C AND DIRECTIONS OF A AND B GIVEN

(b) GRAPHICAL SOLUTION OF CASE 2a
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1. Choose a coordinate system and a scale to represent the unit
vectors in the X and Y directions respectively.

2. Draw the vector C at a convenient point; it is completely
defined.

3. Construct two lines parallel to the two known directions such
that the first line passes through the tail and the other
through the tip or the terminus of C as shown in the figure.
At the point of intersection of these lines, the vectors A
and B meet.

4. Label the vectors A and B remembering that the two lines were
drawn parallel to the respective directions of these two
vectors.

In case 2b, the unknowns are the magnitude of one vector and
the direction of the other as shown in Fig. 2.1la. The steps in

this cases are:

1.

2.

Draw the vector C as bhefore.

Draw a line parallel to the known direction (ﬁv ) from the
tail of the vector C.

Construct a circular arc of radius equal to the magnitude of
A from the tip of the vector C. It will intersect the line
which was drawn parallel to ﬁvat two points.

Label the vectors A and B as shown in Fig. 2.11. Remember
that when the magnitude of a vector is given, we have to draw
a circular arc of radius equal to the magnitude.

In case 2c, the magnitudes of both vectors A and B are known

and we have to determine their directions. The steps in this case

would be:

1.

Draw the vector C as before.
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A (MAGNITUDE)

"~ _B(DIRECTION)
~

X A

(a)

B

(b)
FIG. 2.11(a) VECTORS C, A, AND B AS GIVEN

(b) GRAPHICAL SOLUTION OF CASE 2b

From the tail of the vector C draw an arc of radius equal to
|A].

Similarily draw another arc from the tip of C of radius equal
to |B|. The arcs will intersect at two points.

Label the vectors A and B in both the solutions. One has to
be careful while labelling the vectors; they should be
labelled in accordance with their respective magnitudes.

As a point of clarification, it should be stated here that

the direction of any vector lying in a plane is completely defined

if the angle between it and X or Y axis is known. Suppose the

angle

is known with respect to the X axis then as discused

earlier, the angle from the Y axis can be calculated using Eq.
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(2.1). In the graphical analysis there is no need to calculate tr:
angle from the Y axis. Figs. 2.9 to 2.12 show all the four cases

If the magnitude of a vector is unknown then it can be scaled from
the drawing. On the other hand, if the direction is unknown then
the first step is to draw another set of axes at the tail of the
vector whose angle is to be found out and then in the second step
measure the angle counter-clockwise between the positive X axis

and the vector. If someone measures the angle counter-clockwise

Y
B(MAGNITUDE)
[

¢ A (MAGNITUDE)

C .' ;
X

(a)

Y

(b)

FIG. 2.12(a) VECTORS G, A, AND B AS GIVEN

(b) GRAPHICAL SOLUTION OF CASE 2c¢
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from the Y axis then he or she is not wrong. For him or her, the
Y axis is the reference axis. But most commonly used axis is the
X axis. The representation of the vectors in the polar form would
amount to measuring the angles from the X axis because the
reference axis for the angular measurement normally coincides with
the X axis. If the unit vector is to be represented analytically,
then we need to know the angles with respect to the X and Y axes
as expressed in Eg. (2.4). It should be noticed that in the
graphical method of solution of vector equations, we are obtaining
the unknown quantities such as the magnitude or direction in the
polar form. This is because when we wrote the equations for all
the four cases, these equations were expressed in the polar form.
Once we know these unknown quantities, then we can express these
vectors in terms of their cartesian components, if desired. In
all the last three cases, C could be given to us either in terms
of the cartesian components or in the polar form. Even if it was
given in terms of the cartesian components still we could draw
each of the components and find the resultant of the two as the
summation of the two vectors. When the vectors are added
analytically we always add the components along the X and Y
directions. The graphical technique will be used very extensively
in this text and the awareness of the fact that the solutions are
performed in the polar form will make the task a bit easier when
we carry out the velocity and acceleration analyses. In these
analyses, there are addition or subtraction of vectors involved
and these vectors may be present in one (polar) form or the other
(cartesian).

In the position analysis of mechanisms one has to determine
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the position vectors of various points on the 1link. While
specifying the problem, the 1link lengths and joint angles are
given in such a way that there are maximum of two unknowns per
equation. There may be several links involved and it is always
possible to divide the problem of solving the entire mechanism

into sub-problems and solve these.

2.4 Solution of Planar Vector Equations Using Complex-Algebra

It is possible to solve the vector equations which are planar
only, wusing the complex numbers. If these vectors, i.e.,
position, velocity, and acceleration, exist in the
three-dimensional space then the complex algebra method can not be
used. We are using these vectors defined in two-dimensions only.
A complex vector has a real and an imaginary part as shown in Fig.

2.13. One can express complex numbers in terms of the rectangular

P(X,Y)

IMAGINARY AXIS

b= . - - - - - ——

REAL AXIS

FIG. 2.13 COMPLEX VECTOR Roo
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components, if they are given in the polar form. In the polar
form, the angle is measured counter-clockwise from the real axis.
The addition or subtraction of complex numbers is done just like
ordinary vectors in terms of the rectangular components. The
division or multiplication of complex vectors is very simple in
the polar form, whereas the division of ordinary vectors is not
defined. We will see in the next chapter that the differentation
of complex vector 1is very simple and 1leads to considerable
simplifications in the mathematical analysis of velocities and
accelerations. Example 2.1 shows various mathematical operations
using the complex numbers. Just 1like the graphical method of
solving vector equations, one can also use complex numbers to

solve these for all the four cases.

Example 2.1
Express the two complex vectors A = 3 + 2j and B = 5 + 7§ in

polar forms and find (a) A + B (b) A - B (c) A x B (d) A / B.

Solution:
A= (32 + 25" / tan""(2/3) = 3.606 / 33.69
B = (5°+ 79" /tan'(7/5) = 8.602 / 54.462
(a) A+ B = (3 +2]j) + (5 + 7)) =8+ 9] = 12.042 / 48.366
(b) A -B = (3 +2j) - (5+7j) =-2~-5j = 5.385 /248.199
(c) A x B = (3.606)(8.602)/(33.69+54.462) = 31.019/88.152
(d) A/ B = —%;ggg— /(33.69-54.462) = 0.419/339.228

In case 1, we are given the vectors A and B, and we have to
find C. The derivation of equations is straight forward because
we can write
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c=ce'®=2a¢e% +5e'% (2.21)
=(A Cos e, + j Sin eA) + B (Cos 6, + j Sin GB)
=X+ Y 3
= V(x%+ Y% 'Y (2.22)
where Y = tanq(Y/X) and the correct quadrant of ¥ can be known
using Egs. (2.9a) to (2.94). Comparing the left and right hand

sides, we get cC = V(X2+ YZ) and 6. = y. There 1is only one

solution in this case.

vV + ﬁv where the unknowns

8

In the case 2a, we start with C = A
are A and B. We multiply both sides of this equation by e '°B

after expressing them in the polar form. Thus we will obtain

je -eB) j(eA-eB)
Ce ° =Ae + B (2.23)

Writing this equation in terms of the rectangular coordinates we

get

C Cos(ec- BB) + 3 Sln(ec- BB) = A Cos(eA— eB) + Aj Sln(eA— GB) + B
(2.24)

Equating the real and imaginary parts on both sides we will have

1l

C Cos(ec— eB) A Cos(eA- eB) + B, and (2.25)

C sin(6 - 6,) = A sin(e,- 8) (2.26)

Therefore, A can be obtained from Eg. (2.26) as

C Sin (8; GB)

A % ~sine,-9,) (2.27)

We can carry out a similar process by multiplying Egq. (2.21) by

eﬂeA and obtain the value of B as

C sin (6 - 6 )
c A

B = sin(e _-,) (2.28)

In this case also there would be only one solution. In the case
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2b, the unknowns are 8, and B. We can obtain the solution for
this case by following a procedure similar to case 2a. The

solutions for unknowns are:

[ € sin (8- 8,)
eA = GB + Sin Y (2.29)
B =C Cos(6_-6.) - A Cos(6,- 6,) (2.30)

The arc Sine term is double valued, so we will get two solutions
8, and eA. When we substitute these values in Eq. (2.30), we
will obtain two values of B. The solution sets will be BA , B and

e, B’.

The unknowns 1in case 2c are eA and eB. The procedure to
obtain these two angles in terms of known parameters is again same

as before. We start with the equation

j6c 164 168

C e = A e + B e (2.21)

b=

Multiplying both sides by e ’°B and then writing the real and

imaginary parts separately one obtains

A Cos(eA - ec) =C - B Cos(eB - ec) (2.31)

A Sln(eA - ec) = - B Sln(eB - ec) (2.32)

Squaring and adding these two equations we get

2

A =C2+B2—2BCCOS(8B-6) (2.33)

C

The only unknown in this equation is 6, . Thus 6, can be obtained

by

2 2 2
_ - -1 C + B - A
BB = QC + Cos [ > B } (2.34)

Similarly one can obtain an equation for 6, as

2 2 2
_ + -1 C + A" - B
12} 6 * Cos 5 C A (2.35)



Since arc cosine function is double valued, the correct pair of e,
and 6, can be checked by substituting these pairs in any one of
Egs. (2.31) and (2.32).

Example 2.2

Case 1 : Given the vectors A = 8.247 255.969 and B = 6.404
/128.659. Find C.
Solution

In case 1, the two unknowns are C and ec. We begin the
solution by separating the real and imaginary parts of the
equation (2.21)

C(Cos 6, + j Sin 6.) = A(Cos e, + j Sin 8,)

+ B(Cos GB + j Sin QB) (a)
Equating the real and imaginary terms in Egn. (a), we obtain two
real equations corresponding to the horizontal and vertical

components of the vector equation.

C Cos ec A Cos eA + B Cos eB (b)

C Sin 6. = A Sin 6, + B Sin 6, (c)
By squaring and adding these two equations (b) and (c), 6, is

eliminated and a solution is found for C.

c=v 2%+ B + 228 Cos(e, - 8,) (d)

Therefore

c v/(8.247)2+(6.4O4)2+2(8.247)(6.404) Cos(128.659 - 255.969)

il

= 6.708

The angle 8. is found from

A Sin6é + B Sine
6 = tan’’ A B
C A CoseA + B CoseB
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= tap-!|8:247 Sin(255.969) + 6.404 Sin(128.659)
- 8.247 Cos(255.969) + 6.404 Cos(128.659)

206.565°

Case 2a : Given C = 6.708/206.565, GA = 255.969 and GB = 128.659.
Find A and B.
Solution
A can be obtained from Eg. (2.27)

C Sin (eC - BB)

A= —Ssm @ -8)
A B

= 6.708 Sin (206.565 - 128.659) = 8.247
Sin (255.969 - 128.659) .
Similarly, B can be obtained from Eg. (2.28)

c sin (8 - @)
B = [ A
Sin (6. - 6)
B A

- 6.708 Sin (206.565 - 255.969) = 6.387

Sin (128.659 - 255.969)

Case 2b : Given C = 6.708/206.565, B = 8.246 and QA = 128.659.
Find 6, and A.

Solution

We can obtain the solution for this case by following a procedure

similar to case 2a. The solutions for the unknowns are:

(e)

B

L[ € Sin (6. - 6,)
eB = eA + Sin

= 128.659 + Sin4{6.708 Sln(gogéZGS - 128.659) }
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The arc Sine term in Eg. (e) is double valued, so we will get two

solutions 6, and 6_,. They are

eB

I

128.659 + [ 52.659 }

127.304

Therefore 6, = 181.355° and 6_, = 255.963°.
The solution for A is given by the following equation which is

similar to Eqg. (2.30):

A C Cos(6_ - 8,) - B Cos(6_ - 68)
c A B A

6.708 Cos(206.565 - 128.659) - 8.246 Cos(181.355 - 128.659)

-3.592

Hence the two values of A are

A = -3.592/128.659 = 3.592/(128.659+180) = 3.592/308.659
and A’ = 6.708 Cos(206.565 -128.659) - 8.2460 Cos(255.963 - 128.659)
= 6.403

Case 2c : Given C = 6.708/206.565, A = 8.246, B = 6.403. Find eA
and 6 .
B
Solution

6, is obtained by using Egq. (2.34)

2 2 2
- -1| 6.708° + 6.403° - 8.246
206.565 <+ Cos [ 3 (6.708) (6.407) J

I

206.565 + 77.905
Hence 6_ = 128.659° and o = 284.47°
Similarly one can obtain 6, from Eq. (2.35) i.e.,
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2 2 2
-1 6.708" - 6.4037 + 8.246
206.565 + Cos { 3 (6.708) (8.246) J

206.565 t 49,399
Hence GA = 255.964O and 8; = 157.166°
2.5 The Solutions of Planar Vector Equations Using the Chace
Method
Before discussing the actual solutions, let us review some of
the formulas of the vector dot and cross products. Here we assume
that the position, velocity, and acceleration vectors lie in the
(X-Y) plane, so their 2 components will be zero. First we will
discuss some of the basic rules about the vectors which are:
A +B =B + A (commutative law for addition),
A+ (B+C) = (A + B) + C (associative law for addition),

mA=Am (commutative law for multiplication by a scalar m), and

m(A + B) = m A + m B (distributive law for multiplication by a
scalar).
The cross products do not follow the commutative law. We

must follow the following rules:

ix j=Kk j xi= -k ixi=0
jxk =1 kxj=-~1i jx3j=0
kK x i=7 ixk=-j kxk =0

Let us define two vectors A and B as
A =1 A1 + 7 A2+ k A3 (2.36)

B

i B1 + B2 + k 83 (2.37)
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then

i 3 k
A x B = A1 A2 A3
B B B
1 2 3
=i (@AB,-2AB)+3j (AB -AB) +k (AB, -AB) (2.38)

The dot product of the vectors A and B is a scalar quantity. If @
is the angle between these two vectors then

A.B = |A| |B| cose. (2.39)
In the case of unit vectors, we have

i.i =3.3 = k.k =1, and

i.j = j.k = k.i = 0.
Therefore, we can write
A.A = A%+ A%+ A% (2.40)
1 2 3
A.B=AB +AB_ +AB_, and (2.41)
171 272 373
A. (A XxB) =B. (AXB) =0
If C is a third vector expressed as
C=C i+cC_3j+cC_«k
1 2 3
then
A. (BxC) =B. (CxA) =C. (A X B).
Any of these equalities will numerically be equal to
A A A
1 2 3
B B B =A(BC, -BC)+A (BC =-CB)
1 2 3 17273 372 2 371 31
c, c, c, +A  (BC, - BC) (2.42)

We have already discussed the unit vectors, and suppose a
vector A is completely defined or known i.e. we know its magnitude
and direction with respect to the X axis then, one way to obtain
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the unit vector A is to divide A by its magnitude A i.e.,

A 1
A= —— =3 {A11+A23+A3k]
Al A2 A3
= A 1 + i J+Tk
If A3 = 0, we would have
A A
A =—1i+—29+0%k
A A
= Cos e, i+ cos B j + Cos 90 k (2.43)
where g = (270° + 8,) or (90° - 6,) (2.44)

The angle between the planar vector and the Z axis is always equal
to 90°. Thus the knowledge of e, is sufficient to define A. Now
we will discuss all the four cases.
Case 1 The known parameters are A, i, B, and ﬁ. We can obtain C
as

c = A A+ BB (2.45)
All the parameters on the right hand side are known. Therefore, C
can be calculated in this equation.
Example 2.3
Add and subtract the vectors A and B given by A = 6i + 3j, and B =
31 + 47.
Solution

Let C = A + B

i

(61 + 33j) + (31 + 47)

(91 + 73)
Similarly, we can write D = A - B

= (61 + 33j) - (31 + 47)

Il

3i - 3
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Example 2.4

Find the dot and the cross products of the vectors A and B given
in the Example 2.3.

Solution

i

Let C A . B
= (61 + 33) . (31 + 47)
If we use Eq. (2.41) we will have
C=A.B= (6 x3+ 3 x4) = 30
Similarly, if we have a vector
D=2AxB= (61 + 3j) x (3i + 47)
We can use Eg. (2.38) and we can write

C=1(3 x 0 - 0.4) + 3(0 x 3 - 6 x0) + k(6 x 4 - 3 x 3)

0i + 03 + 15k
Example 2.5
Find the sum of vectors A and B given by
A=10/30°, B=5 /60°
Solution
We can find the solution by using Egs. (2.44) andA (2.45) .The
expression for unit vectors A and B will be
A =1 cos 30° + j cos(270 + 30)
= 1 cos 30 + j cos 300
Similarly, we can write
B =1 cos 60 + j cos(270 + 60)
= 1 cos 60 + j cos 330

Now we can use Egqg. (2.45) and write

0
i

10(1i cos 30 + j cos 300) + 5(i cos 60 + j cos 330)

11.162 i + 9.333 j = 14.55 /39.896°
Case 2a In this case we know A, B and C but the unknowns are A
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and B.

The equations for A and B are

_ C.(B x k)
A = A.(B x k) * and (2.46)
_ C.(A x k)
B = 5 Ak (2.47)
It will require a lot of computations if we use Egs. (2.46) and
(2.47) as given above. Since the vectors C, A, and B are planar,

the coefficients of k for the vectors C, A, and B are zero. We
can use Eq. (2.38) to reduce our computations. To do this, let
C=Ci+ Cj+ 0Kk,
b1 2

B=bi+bj+o0Kk, (2.48)

h =2
il

ali + a2j + 0k, and

k =01 + 0j + 1k,

then
C. (BxXKk) = C1 (bz) + C2 (—b1) = Clb2 - b1C2, (2.49)
A . (BxXk) = alb2 - a2b1’ and (2.50)
B . (Ax k) = bla2 - b2a1 (2.51)
Using Egs. (2.48) to (2.50) in Egs. (2.46) and (2.47) we get
C1b2 " b1C2 C1b2 B b1C2
A= b - ab = 5 (2.52)
1 2 21 1
C1a2 - aICZ C1a2 - a‘102
B=%a -5a =~ =y (2.53)
1 2 21 1
where D = ab - ab
1 1 2 21

Example 2.6
Find the magnitudes of vectors A and B, given C = 6.71 {2060, e, =
255.96°, and 6, = 128.66°,
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Solution
First we will express C, A and B in terms of their cartesian

components which are:

C=-6.027 i - 2.950 j + 0 Kk,
A =i cos(255.96°) + j cos(270 + 255.96) + 0 k
B = 1 cos(128.66) + j cos(270 + 128.66) + 0 k

Substituting the components of each of these vectors in Egs.

(2.52) and(2.53) we get

A = {(=6.027) x 0.781} - {(-2.950) (-0.625)}

(-0.242)(0.781) - (-0.970) (-0.625)
-4.707 - 1.844 _ -6.551 _
Z0.189 - 0.606 ~ —=—o.795 ~ 8-230
B {(~6.027) x 0.970} - {(-2.950) (-0.242)}

0.795

5.846 - 0.714

EE 6.458

Note that the denominators in Egs. (2.52) and (2.53) are of equal
magnitude but opposite in sign; this results in reduced
computations. The solution is shown in Fig. 2.14.

For case 2b the unknowns are ﬁ and ﬁ. The expressions for

the vectors A and B can be derived as

B

{C . (AxKk)} (Axk)* [V/BZ - {C . (A xKk)}*aA ](2.54a)
A=C-B (2.54b)
Using Eq. (2.38), (A x k) can be expressed as
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~

-\\ec =206

6.71 BA-255.96°

68-128.66"

FIG. 2.14 SOLUTION OF CASE 2A USING THE VECTOR METHOD
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(A X k)

i
o)
o
w

i(az) + j(-al) + k O

We have already seen that

C .(A xk) = Cla2 - C2a1 =X, (say)
and let V B® - xf =Y,

29

Thus we can express Eg. (2.54a) as

B=x(a,i-aj+0k) ty(ai+ a j + 0 k)

The steps therefore are:

1. Define the known vectors C and the unit vector A as

(o

Ci+C.j+ 0Kk
1 2
A=a 1i+a_j+0%k
1 2
2. Calculate (A x k) using Eq. (2.5%),

Y, using Eq. (2.57)

3. Obtain the two solutions for B using Eq.

4. Obtain the two solutions for A using Eq.

Example 2.7
Find the solutions of Case 2b, given C =
8 = 128.66°
A
Solution
We can write

C

]

A

i

=i (-0.625) + j (0.781)

Using Egs. (2.56) and (2.57) we have

X, = (-6.027)(0.781) = (~2.950) (-0.625)

1
51

using Eq.

6.71/206°, B

6.71/206 = i (-6.027) + j (-2.950) + k

i cos 128.66 + j cos(270 + 128.66)

(2.55)

(2.56)

(2.57)

(2.58)

(2.56) and

8.250 and



= =4.707 - 1.844 = -6.551

V/(8.250)2 - (-6.551)2

I

and Y,

V/68.063 - 42.916
=V 25.147 = 5.015

Now we can obtain the vector B using Eq. (2.58) as

B = (-6.551){i(0.781) - j((~0.625) + 0 k}

+ 5.015 {i(-0.625) + j(0.781) + 0 k}

{i(-5.116) - j 4.094 + 0 k)
+ {i(=3.134) + j 3.917 + 0 k)

Thus we obtain

B, = -8.25 i - 0.177 j + 0 k,
B, = -1.982 i - 8.01 j + 0 k,
A, =C - B ={i (-6.027) + J (-2.950) + 0 k}

- {i(-8.25) - j 0.177 + O k}

I

2.223 1 - 2.773 j + 0 k
A =C-B
2 2
= {i (-6.027) + j (-2.950) + 0 k}
- {i (-1.982) + j (-8.011) + O k}
= -4.045 1 + 5.061 j + 0 k
The solution obtained is also shown in Fig. 2.15.

In the case 2c¢, the known parameters are C, A, and B, and the

unknowns are A and B. The solution for A and B are given as

2 2 2 2 R 2_ L2 2 2 .

A = [i V/gz - [A 2? * C ) J (ka)+[A 22 + C ] c (2.59)
2 2 2 2 R 2 2 2 2 .

B = {+ V/QZ - (A 22 + C ] ] (ch)+[B 22 + C ] c (2.59)



FIG. 2.15 SOLUTION OF CASE 2B USING THE VECTOR METHOD

To obtain these vectors in the simpler form for computation

purposes, let

a*- B + ¢ _
2C 2
2 2
A" -~ X, =Y, (2.62)
B- &% + C*| _
2C 2
and we can write
i J k
(C » k)= c, c, 0
0 0 1

=1c, + 3 (-cl) + 0 k
= czi - clj + 0 k (2.65)
Using these, we can rewrite Egs. (2.59) and (2.60) as

A =

I+

yz(czi - C1j + 0 k) + xz(cli + czj + 0 k) (2.66)
B = + yz(czi - clj + 0 k) + zz(cli + c2j + 0 k) (2.67)
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Example 2.8

Find the vectors A and B if C = 6.71/206.5, A = 8.2, and B = 6.4.
Solution

We will compute X, Y, and z, as given in Egs. (2.61) to (2.63).

Thus we will have

2 2 2
_ 8.2° - 6.4% + 6.71% _
X, = T x 6.71 = 5.313
Y, = V8.22 - 5.313% = 6.246, and
2 2 2
_ 6.4% - 8.2% + 6.71% _
z, = 5 % 6.71 = 1.396

Using Egs. (2.66) and (2.67) we will have

A =1 6.246(-0.448 i + 0.894 j + 0 k)+5.313(-0.894i ~ 0.448 j+0 k)

]
+

(-2.798 i + 5.584 j + 0 k) + (-4.750 i - 2.380 j + 0 k)

A1= -7.548 i1 + 3.204 j + 0 k

A2 = -1.952 1 - 7.964 j + 0 k

Now, rather than using Eq. (2.67) we will calculate B , and B,
from the known values of A1 and A2 respectively. Thus, we can
write

B =C-A = (-6.001 1 -3.003 j) - (-7.548 i + 3.204 j)
1.547 i - 6.207 3

B, =C - A = (-6.001 i - 3.003 j) - (-1.952 i - 7.964 j)
= -4.049 i + 4.961 j
The solution procedure is also shown in Fig.2.16.
Example 2.9
In a four-bar mechanism shown in Fig. 2.17, the following
data are given:
R, = 120/180 ; R, = 30/60 ; R = 100 ;
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FIG.2.16 CASE 2C USING THE VECTOR METHOD
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100 ¢
B _.-{30
L3
30 /1, M0 [ Ly
A _MN60 120 D
Ly

FIG. 2.17 A FOUR BAR MECHANISM

Rm:= 110 ; /EBC = 30 ;and %m = 150.
Find (a) the orientation of links L3 and L4 (both solutions) and
(b) the position vector of the coupler point E.
In the first step we obtain R__ using case 1 by writing

RBD = BAD + _RBA = 120/180 + 30/60

= 108.167/166.102

Next, we obtain both solutions of vectors RCB and RDC using case 2c

using RDB = RCB + RD

108.42/-13.8° = 100/ 6 + 110/6

The two solutions are

c

R = 100/49.76
C B
1
R = 100/282.640
c_B
2
RDcl = 110/291.711
R = 110/40.690
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[of
FIG. 2.18(a) FIG. 2.18(b)

These solutions are schematically shown in Figs. 2.18a and 2.18b.

The position vector of the coupler point E can be obtained by

writing
REIA =R, + 31:15 = 30/60 + 150/(49.76+30 ) = 178.522/76.503

i
I

30/60 + 150/(282.640 +30) = 143.926/324.115

Rea = By *+ By,
2.6 The Geometrical Method

All the four cases discussed are shown in Figs. 2.19 and
2.20. The angles between A, B, and C, in all these figures are 7,
8, and 6 respectively. 1In case 1 and case 2a, there is only one
solution, whereas in cases 2b and 2c, there are two solutions.
The diagrams in the first set of solutions in all the four cases
look similar but important points to note are that the angular
relationships between the vectors can be determined by producing
the vectors, if necessary, beyond the point of intersection as
shown in Fig. 2.19(a). At any of the apexes, they must point away
from the apex.

(a) when the vectors at a given apex, point in the direction
away from it then by rotating one of the vectors clockwise or
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C )
* A
J 3
B Y €5
(180-v) TTTTTT -
FIG.2.19(a)
c ©a —
C © /A

FIG. 2.19(b)
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X

180-v

FIG. 2.19(c)

FIG. 2.19(d)
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FIG. 2.20(a)

F1G. 2.20(b)
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counter-clockwise about the apex, we can make this vector coincide
with the other vector. Mathematically, we can write this
relationship, for example, in the case of C and A as (here
both vectors are pointing away from the apex c)

6, - 6 =86, (2.68)
The -ve sign indicates that € can be rotated by 6 degrees in
counter-clockwise direction to make it coincident with A. On the
other hand, at the apex where A and B intersect, one of the
vectors is pointing towards and the other away from the apex.
Therefore, the angular relationship between the two can be written
as

e, - (180° - 7) = 8, (2.69)
Here the vector A (the vector which points towards the apex) has
to be extended beyond the apex to see the rotation clearly. In
case of B and C, both are pointing towards the apex, so both of
these vectors have to be extended first and then rotations can be
seen. Clearly here, it is B which has to be rotated counter -
clockwise. Thus we will have

6, =6, + 38 (2.70)

In the second set of solutions, as in case 2b (refer to 2.20a), we

will have the following relationships:

e, =6, - 180 (2.71)

6, =6, + (180 - y') (2.72)
— 7

6, =6+ 38 (2.73)

Using the principles discussed above the set of solutions for case
2c¢ as shown in Fig. 2.20b,will be
QA’ = 8(: - 8 (2.74)

e

B 8,, * (180 - ¥v’) (2.75)
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e, =6, + 8’ (2.76)

Besides all these relationships, one always has to remember that

@ + ¥ +8& = 180 and (2.77a)
8’ + ¥’ + &’ = 180. (2.77b)
Therefore, |6|, |8|, and |7y| should be individually = 180°. This

becomes important when we use the relationships

A _ B 3 c
Sin 8 = Sin & = ~Sin 7 (2.79)
anad
2 2 2
_ A" + B - C
Cos ¥ = > A B (2.80)

While using Eq. (2.79), sine of any of the angles will be positive
quantity, so there will be two solutions corresponding to 6 and
(180 - 6 ). Then one has to select the correct angle using Eq.
(2.77) . Equations similar to Eg. (2.80) do not pose such
ambiguities because Cos 7y will be a positive quantity, so the
solutions will be in the first and fourth quadrants. The fourth
quadrant solution can not be accepted because || has to be less
than 180°. Before we finish the discussion let us summarize
case-by-case the methods of solutions.
Case 1

Here A, 6A , B, and 6, are given and we have to find C and
e, First, we should make a neat sketch and determine 7 using an
equation similar to Eg. (2.69). If e, is greater than 6, then

the equation will be

8 - (180 - ) =@

B A

otherwise it will be Eq. (2.69). It is the vector which has
greater angle, is rotated in clockwise direction which results in
subtracting (180 - ¥) from its angle. In the next step, one can
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calculate C using Egq. (2.80), and then use the second of the
equalities in Egq. (2.79) to calculate &6. Finally, R can be

calculated by using Eq. (2.68).

Case 2a
Here we know C, GC , GB , and 8A . We have to find A and B.
The unknowns can be calculated quite easily in this case. The

angles 8, 7¥,and 8 can be calculated using Egs. (2.68), (2.69) and

(2.70). 1In the next step, one can calculate the magnitudes using
Eq. (2.79).
Case 2b

Here, we are given C, ec ’ eA , and B. The vector whose
angle is given, we will call it A. There are two sets of

solutions in this case. An important point to remember is that we
are not only given 6, but also 6,, = 6, - 180. We have to find
solutions for each of these two cases.

In the first step, we calculate 6 using Eq. (2.68). After
this ¥ and 8 can be determined using Eq.(2.79), and 6, can be
calculated from either Egq. (2.68) or Eq. (2.69). In the second
set of solutions, a similar procedure can be adopted.

Case 2c

Here, we are given C, ec , A, and B. We have to find out 6A

and eB. We have to remember that in the second set of solution,

e = 6 - 6. i.e., vectors A and A’ are at *+ &° from the vector

In this case all the magnitudes of the triangle are known.
Therefore, one can calculate each of the angles 6, 7, and & using
Eq. (2.80) in the first step and in the second step, one can
calculate GA and 93 from Egs. (2.68) and (2.69).
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Example 2.10 (Case 1)

Find the resultant of the vectors A = 10{30 and B = 20{120

Solution

In Fig. 2.21, we have GB = GA + (180 - 7). Substituting for 88 and

GA we get ¥ = 90°. Now we can use Eq. (2.80) i.e.,

¢ =v10% + 20% - 2 x 10 x 20 Cos 90, (a)

and Eq. (2.79) as

10 _ _ 20 __C (b)
Sin & Sin © Sin 90
The value for C using Eq. (a) is 22.361. Now we can use the

second equality in the Eq. (b) as

,
-1} 20 Sin 90

. _ 0
6 = Sin 55 361 J = 63.433
r 10 Sin 90
et in _ 0
d = Sin 55 .361 J = 26.560

An important point to note here is that the second solution for o
= 180 - 63.433 = 116.567 is ruled out because (x + ¥ + &) has to
be equal to 180°. Since we know that 7 is 900, therefore this
value of 8 is not acceptable. Similar reasoning is applicable in
the case of §. ec can be calculated using either 6 or &. For

example,

FiG. 2.21
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6 =6 +6 =30+ 63.433 = 93,433°
6 =6_-68 = 93.44°

Example 2.11 (Case 2a)
Find the magnitudes of vectors A and B given 6, = 240, 6 = 70,
and C = 60/120.
Solution
Referring to the Fig. 2.22, we can write
(2] = 8B + (180 -y) or

A

v =6, - (8, -180) =6 -6, + 180

70 - (240 - 180) = 10, and
6 = 9‘ - ec = 240 - 120 = 120
Therefore, § = 180 - (y + 68) = 180 - (10 + 120) = 50

Now we can use Eq. 2.79 as

A _ _B _ __60 (a)
Sin 50 Sin 120 Sin 10
Thus we have
Sin 50 _
A Sin 1o X 60 = 264.688, and
_ Sin 120 _
B = SIH 10 60 = 299.234

There is only one solution in this case because there were no

inverses of any of the trignometric functions involved.

REFERENCE AXIS

FIG. 2.22
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Example 2.12 (Case 2b)
’ o (o} .
Using C = 120/240"°, 6A = 70 and B = 170, find A and BB .
Solution
As stated earlier in the geometrical method the sketch has to

be neatly drawn so that the correct value of 8A is chosen. In

the problem specified, 6, = 70° will have one solution and e, =
1 2

(70 + 180) will have another solution. There are two solutions

for case 2b. As per the information specified, the two

solutions are shown in Fig. 2.23.

In the first solution let us use, 62 = 250 - 240 = 10 and

120 _ A _ _ 170 (a)
Sin 7, Sin 3, Sin 10

rig. 2.23
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From this,

[P

]

2
Thus
Using Eqg.

To obtain

If we use

Example 2.

Find the two solutions corresponding to C = 90/210, A

80.

Solution

we get

I

Sin 10 x 120 )} _ 0
176 ) = 7.04", and

Sinﬂ(

i

180 - (10 + 7.04) = 162.9%

6, =6,- (180 - 7))
2 2

6, = 7.04 + 70 = 77.04°
2

(a) we have

_ Sin(162.96) x 170 _
, = ST Ts = 286.882

A

the second solution we have

g6 =86 -QA = 240 - 70 = 170
1

this in Eq. (a), we will have

Y 120 0
7, = sin (Sln 170 x 170] = 7.04°
3 = 180 - (170 + 7.04) = 2.96°,

eB1 = eA;- (180 - 7))

= 70 + (180 - 7)

6, = 250 - y = 250 - 7.04° = 242.96 and

. ]
A = _Sin 2.96° x 170

1 Sin 170 = 50.554

13 (Case 2c)

We first find @ using Eqg. (2.80) where
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6 = Cos'1(9g2x+gg°i ;0802} = + 58.411°
Therefore, eA = 6. t 6 = 210 * 58.40. Thus, we have GA =
1
268.411° and 8, = 151.589. We can calculate ¥y using Eg. (2.86)
2
i.e.,

2 2 2
y = Cos'l[ 83 x+8g°x ;090 ] =+ 73.398°

¥ = -73.398 = 360 - 73.398 = 286.602 is not acceptable because it

is greater than 180°. From inspection of Fig. 2.24 we can write

GB = 151.589 + (180 =~ 73.398) = 258.191° and GB = 268.411 +
2 1

(180 - 73.398) = 161.809°

FIG. 2.24
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2.7 The Computer Programs

There are 18 computer programs which will reduce the labor
required in performing a large amount of calculations using
calculators. The advantages of using such programs are that, (a)
the repeated calculations are done accurately, and (b) very
quickly. 1In this way the tedious task of number crunching is left
for the computer; the enigineers only have to make decisions about
using particular programmes while solving a given problem.

In all of these programs, the input can be given either in

the polar coordinates or in the Cartesian coordinates but the

output comes out in both system of coordinates. The input and
output angles are in degrees. The main menu is shown in Fig.
2.25. The data can be typed in with minimum of one blank space

between them (Free Format).

Case 1 can be used for the summation of vectors which can
also be done using programs 5 or 15. Programs 7 and 8 are for
vector cross and dot products respectively, whereas conversion of
rectangular (Cartesian) to polar form and vice versa can be done
using programs 8 and 9 respectively. Program 11 is used where we
have to solve

&+ 8- g/
This type of equation can be converted into
A AR A (case 2a)
where
6, = (6, * 180)

If one wishes, one could solve for D using case 2a (program
2) .Program 12 is useful when a vector is defined with respect to a
set of coordinates which are rotated at an angle 6 degrees with
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