KINEMATICS AND DYNAMICS SOFTWARE

OR DESCRIPTION OF VARIOUS TERMS USED IN THIS

wrAAAR KA AN R v N GO TWARE* " # et an vt v A A vk e &
TYPE 1 ELSE TYPE ANY NUMBER

AM=MAGNITUDE OF VECTOR A
BM=MAGNITUDE OF VECTOR B
CM=MAGNITUDE OF VECTOR C
A(l)=X COMPONENT OF VECTOR
A(2)=Y COMPONENT OF VECTOR
B({1l)=X COMPONENT OF VECTOR
B(2)=Y COMPONENT OF VECTOR
C(1l)=X COMPONENT OF VECTOR
C{2)=Y COMPONENT OF VECTOR
THETAA=ANGLE FOR VECTOR A
THETAB=ANGLE FOR VECTOR B
THETAC=ANGLE FOR VECTOR C
AF=VECTOR A DENOTING THE FIRST SOLUTION
AS=VECTOR A DENOTING THE SECOND SOLUTION
BF=VECTOR B DENOTING THE FIRST SOLUTION
BS=VECTOR B DENOTING THE SECOND SOLUTION
OTHER TERMS FOLLOW SIMILARLY

AR AR KRR RN AR AR AR R AR AN AR RN AR AR RAR AN AR AR R AR R R Ak
AR AR EE AR E R R R R R R AR R Rl R R R R R R R R R R R R R R RN
rxxkxxanxxxwkx*SELECT FROM THE MAIN MENU**ttsa ke nnx
RS AREEEEEEES RS SR R YRR
R A AN R A AN AR AR AR R AN T AR AN R AR A AR AN R A RNRR AR R R AR

ALL INPUT ANGLES IN DEGREES
CASE NUMBER
1=CASE1l
2=CASE2A
3=CASE2B
4=CASE2C
5=SUM OF TWO VECTORS-TWO DIMENSIONAL
6=DIFFERENCE OF TWO VECTORS-TWO DIMENSIONAL
7=CROSS PRODUCT-THREE DIMENSIONAL
8=DOT PRODUCT-TWO DIMENSIONAL
9=RECTANGULAF TQ POLAR
10=POLAR TO RECTANGULAR
11=-MODIFIED CASE2A
12=ROTATIONAL TRANSFORMATION OF A VECTOR
13=DIVISION AND MULTIPLICATION OF ORDINARY NUMBERS
14=SIMULTANEOUS CROSS PRODUCTS OF SEVERAL
VECTORS IN SUMMATION FORM
15=SUMMATION OF N VECTORS IN POLAR FORM
16=SIMULTANEOUS DOT PRODUCTS OF N VECTORS
IN POLAR FORM
17=-RECTANGULAR TO POLAR CONVERSION
OR VICE VERSA FOR N VECTORS
18=SOLUTION OF [A]{X}=(B}, TWO EQUATIONS
100=STOP

GQOmwd >

FIG. 2.25 COMPUTER PROGRAM
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respect to the reference set of coordinates. An example of this
was shown in Eq. (2.12).

The addition or subtraction of ordinary numbers can also be
done using programs 5 and 6 respectively. For example, if we want
to add 5.132 and 6.059. We can add these by expressing it in a
polar form as

X /6 = 5.132 /6 + 6.059 /6
where 6 can be any number such as zero or 30 etc. The result (X)

will be shown in the magnitude of the output. The subtraction can

be performed in a similar manner. Program 13 can be used for
multiplication or division of ordinary numbers. In this program
we have
X = A x B x C
D x Ex F

Suppose we want to divide 9.132 by 2.416. We can substitute A =
9.132, D = 2.416 and C = B = E = F = 1. This program will be
useful in the velocity and acceleration analyses where, for
example, the normal acceleration is given by W or. We can
substitute A = B = w, C = r, and D = E = F = 1. Thus several
combination of numbers can be multiplied or divided without using
a calculator. One can use program 15 where several vectors
expressed in the polar form can be added by using it only once.
This program is especially useful in the acceleration analysis.

A given kinematic problem may require the use of several of
these programs. After finishing all the computations, one can get
back to the system by typing 100. This software can be obtained
from the first author at a very reasonable cost.

Example 2,14
A crank-slider mechanism is shown in Fig. 2.26. This type of
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(a)

150 -
8 20

82.282180° ©,

(b)

FIG. 2.26 TWO SOLUTIONS OF A CRANK SLIDER MECHANISM

mechanism is commonly used in gasoline or diesel engines. Find
the two solutions for this mechanisms corresponding to

RAO1 = 70{20 cm and le= 150 cm

Solution
We start with writing the vector equation
R = R _+ R
A0 BO AB
1 1
70 /20 = x /0 + 150 Zew

We recognize that it is case 2b discussed earlier. Using the

computer program, we obtain the following two solutions.

70 /20 213.855[0 + 150 /170.816 (I)
70 /20 82.299/180 + 150 /9.184 (II)

These solutions are shown graphically in Figs. 2.26(a) and

2.26(b).
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Example 2.15

An offset slider-crank mechanism is shown in Fig. 2.27. The

parameters given are: Rm1 = 75; RBA = 150; RCB = 125 /180; and
Rolc = 20 /90. Find em1 and GMS
Solution

The vector equation in this case will be

ROIA = RBA + RCB + ROIC (a)

Substituting the known parameters from above we can rewrite the
above equation as

75 [eOIA = 150 /6, + 125 /180 + 20 /90 (b)
We can add the last two known vectors using the vector summation

program and get

FIG. 2.27(a)

FIG. 2.27(b)
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75 4901A + 150 /(6 , + 180) = 126.590 /170.910
This equation corresponds to case 2c¢c. The two solutions are

75 /263.476 + 150 /140.943 = 126.590/170.910 (1)
and

75 /78.344 + 150 /200.877 = 126.590/170.910 (1)

From the first set of solutions we have

2] = 263.476, and
01A

(6, + 180) = 140.943 (a)
or
6, = 140.943 - 180 = -39.057 = 360 - 39.057
= 320.943

From this we can obtain 9AB as

= @ + 180 = 320.943 + 180 = 140.943
AB BA
which is same as given in Egq. (a). Similarly, we can obtain eAO
by writing
= 8 + 180 = 263.476 + 180 = 443.476
AO1 OlA

= 443.476 - 360 = 83.476.
It should be noted that whenever the solutions were not between 00
to 3600, we have added or subtracted 360° to bring it within this

range. We can write the second set of solution as

e = 78.344 and
oA
2] + 180 = 200.877.
BA
Therefore
g = 200.877 - 180 = 20.877.

BA

These solutions are shown in Fig. 2.27b.
Example 2.16
For the mechanism shown in Fig. 2.28(a), the following
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FIG. 2.28(a)

vectors and parameters are given:

RCO1 = 20 /190 , BMH = 2/100, RIc = 7 /280
RBol =7 /100 , Bm) = 20/330, RIG = 40 /15.709
RH; = 20/330 , Bm: = 7/100, RDH = 40 /15.709
The other dimensions are given in the figure. Find R .. R__ and
R -
FC
Solution

We can obtain the solution by writing the following equations
R“: = ROlc + RM) = 20/(190 - 180) + 2 /100

1
= 20.099 /15.709

The vectors RDH and RAC should be parallel for the 1link two to

rotate. Therefore we can write
R =R + RDH =7 /100 + 40 /15.709

DC HC
= 41.284 /25.419

Similarly, we can obtain

R. =R_+R_ =7 /(100 + 180) + 40 /15.709
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= 39.916 /5.660

Finally, we obtain R_. and R__ by writing

REC= Rm:+ RH)= 39.916/25.419 + 20/330 = 53.847/7.613

Fe ce - 39.916/5.660 + 20/330 = 57,363{353,932

R =R _+ R

Example 2,17
The following vectors and parameters are given for the mechanism

in Fig. 2.29(a).

FIG. 2.29a

FIG. 2.29b
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RAOI 2.5 /150; RMB = 9.250 /172.306

RCO = 8.669 /95.567; RFol = 10 /135
— — - — 0. 1
o RDC = 2; /GED 90; Rm: 10

Find R and R .
DF HF
Solution
We obtain R
CF

R _ =R - R = 8.669 /95.567 - 10 /135

CF co, FoO_
= 6.422 /14.032

From the triangle GCF (refer to Fig. 2.29(b))

— az:.-1f GF SRS | 0.5 — 20
¢ = Sin ['FE_] = Sin [ 6.424 ] 4

Therefore 6 = 860

Now we can write
R = R + R
HF EF HE

2.5 /(86 + 14.032) + 10 /10.032
10.308 /24.068

We can also obtain RDF by writing the equation

I

R =R _+ R =6.422 /14.032 + 2 /100.032
DF CF DC

= 6.858 /30.945

In this equation R . is parallel to R__. We can solve R from

the figure using the method used in Example 2.13 rather than
assuming from the problem statement.
Example 2,18

Find RCBand R in the mechanism shown in Fig. 2.30(a). Use

the following data in your calculations:

RAo2 = 5 /45; Roo = 20 /180; RBA =7 /80.881
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FIG. 2.30a

FIG. 2.30b

Solution

We can write

= 20 /180 + 5 /45 = 16.840 /167.881

From Fig. 2.30(b), we can write the relationship

O D
P | 1 _ . -1 0.788 _ L0
8 = Sin [—XBT—] = 8Sin [—137535] = 3

In addition, vectors Rm:and RAD are parallel.

Therefore

e = 6 + 180 = (167.881 + 180) = 347.881
= 68 + 3 = 347.881 + 3 = 350.881
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2] =6 - 90 = (350.881 - 180) -90 = 80.881
CD1 AD

Since vectors RCB and RDA are parallel,
Qw = Gm = 350.881

Therefore the vector RCB = 16.604 /350.881
2.8 Loop Closure Equation

For the closed loop mechanisms, the loop closure equation is
quite wuseful in analyzing the positions of various points on
various links as links take up different orientations during the
motion. Vast number of mechanisms are derived from the four bar
mechanism shown in Fig.2.31. We shall study this mechanism when
the 1link l1 (the crank) moves in a counter-clockwise direction.

As this link moves, the other links go through a cyclic motion.

The 1link l2 is called the coupler and 13 the follower.

FIG. 2.31
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Physically there is no fourth link; the 1links 11 and 13 are
connected to the ground through a hinged type of connection.
Therefore we can call the ground as l0 , a frame, which does not
move. In the present configuration we can write

R, =R, + R and (2.81)

B A

R, =R +R_ (2.82)

Substituting for R, in Eq. (2.82) from Eg. (2.81) we get
R =R +R_ +R (2.83)
[ A BA CB

Similarly we can write expressions for R, and R, as

R =R + R
D [of DC
=R +R _ +R_ +R__, and (2.84)
A BA cCB DC
R = R + R
A D AD
=R +R +R_+R +R (2.85)
A BA CB BC AD
Cancelling R, from both sides we can write
R +R_+R +R_ =0 (2.86)
BA CB BC AD

Eq. (2.86) 1is called the loop closure equation and it is the
summation of the position-difference vectors of the various end
points of the links. As the crank rotates, various other links
take up different orientations; thus the orientations of these
vectors change with time. An important point to note is that the
magnitude of these vectors do not change with time because the
link lengths remain constant during the motion.

The loop-closure equation shows the relationship between the
angular configurations of various links and the dependence of the
orientations of links 1, and 13 on 1. The rotation of the crank
l1 causes the other 1links to rotate and we will see in the
subsequent chapters on velocity and acceleration analyses that the
differentiations of the 1loop-closure equation 1leads to the
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velocity and acceleration relationships between the links.
2.9 Absolute and Apparent Displacements, Displacement-Difference
Between Points
Fig. 2.32 shows a point moving along a curved path and its
locations at two different instants of time, t = t1 and t=t2, are
shown by points P and P, respectively. This point is observed
from a moving coordinate system whose locations at these instants
of time are also shown. The absolute displacement of the point is
given by

AR, = RPZO - Rplo (2.87)

It is the difference of the position vectors with respect to the

inertial coordinate system. Similarly, the apparent displacement

Y
a RP\O
Yi
P, ' t=t,
o X
0 - X

FIG. 2.32 ABSOLUTE AND APPARENT DISPLACEMENTS OF P
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will be given by

AR, =R, _ (2.88)

21
The relationship between the apparent and absolute displacements
is given by

ARP/0 = ARby@ + AF%H' (2.89)

This equation relates the absolute displacement of a moving point
in the two dimensional space to its apparent displacement with
respect to a moving coordinate system. It is an extremely useful
relationship and will be used again in the chapters on velocity
and acceleration analyses.
2,10 Translation and Rotation

The locations of two links P1Q1 and L1M1 at a certain instant
of time t = t1 , is shown in the Fig. 2.33. These links move and
their locations are also shown at t = t, as PQ and LM,

respectively. 1In this figure the orientation of the link P Q has

not changed therefore ARp = ARQ . If we take any other point on
1 1

this link then we will find that its displacement will also be

equal to ARP or ARQ . This 1link has undergone translation where
1 1

all the points have egual displacement vectors i.e., the
displacement vectors of all the points are equal in magnitude as
well as direction. This is not true in the case of 1link LM
where the orientation of the 1link has changed in the final
position. This was possible because of the difference in the
displacement vectors of various points. This link has undergone
both a translation and a rotation. The total displacement can be
divided into two parts. 1In the translation, the link takes up an
orientation shown by L%M; and then rotates motion the
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(t=ty)

(t=t0

FIG.

2.

33 DISPLACEMENT DIFFERENCE BETWEEEN TWO POINTS AND

ROTATION
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displacements of various points on the link are different and this
rotation part accounts for the difference in displacements.
2,12 Maximum and Minimum Transmission Angle and Crank Angle

We have defined the transmission angle in Chapter 1 and for a
certain four bar mechanism is shown in Figs. 2.34(a) and 2.34(b).
We mentioned earlier that if the Grashoff’s criteria is satisfied
then the smallest link can revolve through 360°. For these types
of mechanisms only, the extreme values of the transmission angle
occurs when the links lO and l1 are alligned as shown in these
two figures. Referring to the Figs. 2.34(a) and 2.34(b) we can

calculate ¥ and ¥ as
max min

2 2 2
L+ - )
Voax = COS 5T (2.90)
2 3
2 2 2
-1 12 t 13 - (10 - ll)
Toin Cos 21 1 (2.91)
2 3

On the other hand, if the link lengths are such that they do
not satisfy the Grashoff’s criteria or is not of the crank-rocker
or double rocker type, then the crank would not be able to go
through 360° but the crank angle will be limited within a certain
minimum and maximum values. These values can be easily calculated

from Figs. 2.34c and 2.34d as

DRSS S S S
(e)_, = Cos =TT and (2.92)
" 0 1
2 2 2
(6,)pn = Cos” R S 2.93
1/ min 2 lO l1 ( : )
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It is quite obvious from these two figures that v 180%and

ax

CA 0° under these conditions. In other words, the links 12 and

l3 are alligned along a straight line. 1In Egs. (2.90) and (2.91),

the links 10 and l1 were alligned along a straight line.
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CHAPTER 3

VELOCITY ANALYSIS

3.1 Absolute Velocity

Fig. 3.1 shows the curved trajectory of a moving point P at
two instants of time. The displacement of this point will be
given by ARP as shown in this figure and the average velocity

during this interval At will be
AR

P
VP = T (3.1)

The instantaneous velocity therefore will be

ARP
v, =1Lt 5
At - O

and its direction will be along the tangent to the curve at P.

(3.2)

This 1is because as t tends to zero, the direction of ARpwill

approach the tangent.

FIG. 3.1 CURVED TRAJECTORY OF A POINT AND INSTANTANEOUS VELOCITY
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3.2 Angular Velocity and Velocity Difference

Fig. 3.2 shows the locations of a rigid 1link PQ at two
instants of time t1 and t2. Since the orientations of the link at
these instants of time are different, the motion of the 1link can
be assumed to be a combination of translation and rotation. ARp
shows the translation and Rd’o’ is the displacement of Q due to
the rotation about P’. This is the difference of the

displacements between the points Q and P and we will refer the

vector Rivigr @8 ARmf Using the triangle QQ’Q" we can write
AR =R + R =R + R
Q O’Q Q)’Q’ P)P Q’,Q’
= AR_ + AR (3.3)
P QP
If (t, - t) = At is infinitesimal then we can also write
AR0 AR, ARQP
S
At - O At > O At > 0
or
VQ = VP + pr (3.4)
Y

FIG. 3.2 ROTATION AND ANGULAR VELOCITY
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Now we want to obtain the magnitude and direction of Vm, If we
refer to Fig. 3.3 where the line P’S bisects the angle A8, we can
write Q’Q’’ = 2Q’S = 2Q'P’ sin(ég).

Thus, the magnitude of the vector VQP using the definition
above will be

= Lt |Q P’ -A—el = Q'P'|w| (3.5)

|V AT
At-> 0

QPI
where the magnitude angular velocity w is defined as

o] =l g2l = |Gl

At » O

and its direction is along the instantaneous axis of rotation
which is along the Z axis in this case. If the rotation of the
body 1is counter-clockwise then w will have positive magnitude.
For example, if the link at any instant of time is rotating with 5
radians per second counter-clockwise then we would write

w=01+4+07j+ 5Kk
The w vector is always normal to the plane of rotation. Returning
back to Eq.(3.4), the direction of Ww will be tangential to the
circle (along the unit vector t) as shown in Fig. 3.3 Thus, using
Eg. (3.5) we can write

VQP = W RQ,P, T =W X RQ,P, (3.6)

This equation indicates that the difference between the
velocities is due to the rotation of the link provided the points
lie on the link. If we take another point L (refer to Fig. 3.2)
then using Egq. (3.6) we can write
VLP = wox RLP
It is worth mentioning here that the term relative velocity
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FIG. 3.3 DISPLACEMENT DIFFERENCE AND VELOCITY DIFFERENCE

@ (t=ty)

ARQ\P

FIG. 3.4 APPARENT DISPLACEMENT AND APPARENT VELOCITY
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commonly used in the kinematics area can be sub-divided into, (a)
velocity difference and (b) apparent-velocity. The distinction
between these two can be understood from Figs. 3.2 and 3.4. In
Fig. 3.2, the velocity difference Vor is due to the rotation of
the link where the points @ and P are both on the same link. 1In
Fig. 3.4, the point Q is not on the 1link and moves along a curved
path. At a certain instant of time when viewed from the normal
direction, it appears coincident with a point P on the moving
link. The absolute velocity of Q can be observed from the X - 0 -
Y system (a stationary system) whereas its velocity as observed
from the (xf— o,- yl) system (a moving system) will be apparent
due to the motion of the link. The apparent velocity is based on
the apparent displacement (ARaw) as discussed in the previous
chapter. Thus the apparent velocity of Q with respect to P will

be referred to in this book as

ARQ/P
VQ/P = Lt AT (3.7)
At - 0
rather than Vm“ The apparent velocity VQ/P does not involve w,

the angular velocity of the moving link.
3.3 The Apparent Velocity of a Moving Point

In analyzing mechanisms, sometimes it 1is convenient to
observe or find apparent displacements rather than absolute
displacements. In such cases, the absolute velocity is calculated
from the apparent velocity. In Fig. 3.5a, the absolute
displacement of a point P not attached to the 1link 2, is shown
along with its apparent displacement ARW1' Here, this point is
constrained to move along a curvilinear path on this 1link.
Clearly, 1its path on the absolute coordinate system will be
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FIG 3.5(a) APPARENT VELOCITY OF A POINT P

FIG.3.5(b)
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different from this one. Since P is moving with respect to P1 we

can write

AR AR A A (3.8)
1 1 1 1

= VO + w X RP o T VP/P (3.9)
1 i1 1

For small apparent displacements one can write (refer to Fig.

3.5b)

Aqu = (chord AB) r, = (arc ACB) r,

In this figure r, is perpendicular to r,. It is obvious that as
A A

At->0 r, will coincide with T, a unit vector tangential to the

curve at A. If we represent arc ACB as AS then we can write
A

_ AS

= Lt (E) T

At > 0
A
d
= (£) T (3.10)

\'/
P/P1

Using Eg. (3.10), we can rewrite Egqg. (3.9) as
A
= ds
Vp = V01+ W X RP101+ ( aE ) T (3.11)

Example 3.1:

To clearly understand each of the terms on the right hand
side of Eq.(3.11), let us take an example of a man jogging on a
ship shown in Fig. (3.6). The man, at this instant, is
represented by a moving point P and he is at a point marked P on
the deck. He jogs with a speed of 10 km/hour; therefore his

apparent velocity at this particular instant will be
A
A =10 T = =10 i
P/P 1
The other information provided to us are: vV, = 0.20 (m/s) [1200;
1

w = 5k (rad/sec); and R, = 100 m 170?

) In this figure, the
11

absolute coordinate system (X - 0 - Y) is on the shore. One can
conveniently use the subroutines discussed in Chapter 2 to do this
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- SHIP

FIG. 3.6 VELOCITY ANALYSIS OF POINTS IN DIFFERENT COORDINATE
SYSTEMS
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problem. To use the subroutines, R, is at first converted into
1

the cartesian coordinates. So we can express the vectors as

R = 34.158 i1+ 93.986 j1+ 0k

w =01 + 0 Jj + 5 k1

1

and their cross product using Eq. (2.38) will be

0 0 5 = -469.93 1 + 170.79 J, + 0 k1

34.158 93.986 0
We can add the second and third terms now and their sum will be

(-469.931 + 170.79j+ 0k) + (-10 i) = -479.93i + 170.79j +
Ok1 We can convert this vector into the absolute coordinate system

by writing in the form
cos 30 -sin 30 -479.93 -501.007
sin 30 cos 30 170.79 -82.162

= -501.0071 - 92.1627
Now, we add the term 1 in the cartesian form and obtain
VP = (-0.100i + 0.1733) + (~-501.0071i - 92.1627)

= -501.107i - 91.989j

509.480 L(190.398)

i

We can find VP by a second method also where we can convert all
the vectors in the absolute coordinate system to start with, and

obtain the results. If we do this we will have

cos 30 -sin 30 34.158

P10 = -17.4321i + 98.4707,
sin 30 cos 30 93.986
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wx R, = 0 0 5| = -492.35i -87.1673 (3.12)
11
-17.432 98.470 0
and
cos 30 -sin 30 ~10
10 v = =101, + 0], = = -8.69i - 5.00j
sin 30 cos 30 0

Thus the summation of all the vectors will be
\/ = (-0.100i + 0.1733) + (-492.35i - 87.163j) + (-8.69i - 5.007)

-501.14 i - 91.987 j

]

which is the same result as before. 1In the graphical method to be

discussed now, the conversion of vectors Rp0 and W, from the
11

Dﬂ_°1_ yi) into absolute absolute coordinate system is done very
easily mentally, so the graphical method appears to be quite
efficient. Another advantage of the graphical method is that it
helps in visualizing the problem very clearly. The disadvantage
of the graphical method is that, if in the problems to be solved
the magnitudes of various terms to be added or subtracted are of
very different order, then this method lacks in accuracy. In
these cases it is very difficult to choose a convenient scale for
plotting these vectors. An important point to note is that for
linkage motions in parallel planes, the w vector or the angular
acceleration vector « to be discussed in the next chapter, are
always perpendicular to the plane. So the effect of the cross
product of w or o with any other vector will be to rotate that
vector by 90°in the direction of w. The cross product can be done
very easily mentally rather than as shown in Eq. (3.12). In this
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particular case we have

W x RP o = 5k x (-17.4321 + 98.4707)
1

This cross product, in the polar form, will be

5k x 100 /70°

i

500 /(70°+ 90°)

1l

500 /160°
We simply multiply the magnitudes of the two vectors which are 5

and 100 and add 90° to the angle made by the wvector RPO with
11

respect to the reference axis. On the other hand, if the w was
clockwise i.e. if it was represented by -5k then we would write it
as

-5k x 100 /90 = 500 /(70 - 90)

= 500 Z -20 = 500 Z 340
If we remember this fact then we would reduce the computations
either in the velocity or acceleration analysis drastically. To
add or subtract two vectors analytically, one must calculate the
cartesian components, but in the graphical method it is very
easily done as explained in the Chapter 2.

An observer on the ship will only see the apparent velocity
expressed in the third term, whereas an observer on the shore will
see the resultant of all the three terms. The second term is due
to the velocity difference and the cause of this is the angular
velocity w of the ship. On the other hand, the third term is due
to the man jogging on the ship and this is due to the ability of
man to run; there is no w involved in this third term which is
called the apparent velocity of the man. The first term arises
due to the horse power of the engine of the ship, ocean currents,

wind etc. The source of w are also these causes. VO is the
1
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absolute velocity of the point 01. The term ’ Relative Velocity ’/
is sometimes used to describe the difference in velocities of two
points without making any distinction about the cause of this
difference in velocities. Thus, both the apparent-velocity and
the velocity-difference can be called as the Relative Velocity.
These concepts can be understood more clearly by taking examples
of two mechanisms shown in Figs. 3.7 and 3.8. In Fig. 3.7a, links
2, and 4 can rotate about points A and F respectively because of
the pinned connection. As shown here two separate motors will be
required to rotate these two links. If we assemble link 3 using
the two pins shown in the diagram, we would get a mechanism as
shown in Fig. 3.8b. Now we need only one motor which can drive
the mechanism and may be attached to the link 2. The motion to
the link 4 is transmitted through link 3 which acts as a coupling
link between 1links 2 and 4. To derive this mechanism only one
motion is required because this mechanism has only one degree of
freedom. In the mechanism shown in Fig. 3.8, the 1link 3 is
connected to link 2 through a pin but it has a sliding connection
with the link 4 rather than a pinned connection in Fig.3.7. The
velocity analysis of these types of mechanisms can be easily done
by applying Eg. (3.11) to each of these links and using equations
of constraints which describe the types of connections between the
links. This method is called the link-by-link method.
3.4 The Link-By-Link Method of Velocity Analysis: The Analytical

Method

To illustrate this method let us consider another example.
Suppose the 1link 2 shown in the Fig. 3.9 rotates with an angular
velocity w = 20 rad/s ccw. We would like to know the following:
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FIG. 3.7 ASSEMBLY OF VARIOUS LINKS OF A FOUR BAR MECHANISM
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FIG. 3.8 LINE DIAGRAM AND ASSEMBLY OF LINKS OF A MECHANISM
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3.4.1 Velocities of Various Points on Link 2
We will start with the link 2 whose angular velocity is given

to us and apply Egq. (3.11). This equation, in the present case,

will be

0 + 2k x 2.5 < 150

<

]
o<
+
€
x
»FU
i

i

50 / (150 + 90) = 50 / 240

In Fig. 3.9, the direction of the vector V.o is obtained by
1
rotating R, in the direction of W, by 90%and multiplying the

magnitudes of w, and R,, - If we were also interested in knowing

the velocity-difference of another point J shown in Fig. 3.9.b on

this 1link, we would have to rotate the vector R.JO also by 90° at
1

the point J. This would give us the direction of Voo and its
1

magnitude will be |w| times |Rm . The tip of Vﬂ)will lie on
1

the 1line Jjoining the tip of vV, and o . All the velocity
1

difference vectors are parallel because they are all perpendicular
to R .
AO1

3.4.2 Velocities of Various Points on Link 3

Since there is a pinned connection between links 2 and 3, the
velocity of the point A on link 3 will be same as the velocity of
the point A on link 2. Representing the number of the link as the
subscript of the point, we can express this constraint equation as

v, =V, (3.13)
3 2

The 1links 2 and 3 can rotate relative to each other. Now we can’
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FIG. 3.9(b)

FIG. 3.9 VELOCITY DIFFERENCE BETWEEN POINTS A AND J
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write the equations for velocities for various points on the 1link
3. If we use Egq. (3.12) again, we can write

\' =V + Vv =V + w xR (3.14)
B A B_A A B_A
3 3 33 3 33

We have already determined v, =V, =50 / 240 and using the first
2

equality in Eg. (3.14) we obtain
m% = 50 / 240 + v%¢3 (3.15)

3.4.3 Velocities of Various Points on Link 4
Because of the pinned connection between links 3 and 4, we
can write a constraint equation similar to Eq. (3.13) which will

be

V =V (3.16)

We also have an additional velocity difference equation for this

link as
v =V + Vv = V + w x R
0 4 B O
4 2 4 2 2 4 2

=0+ V =0+ w xR (3.17)
4 B O
4 2 4 2

Now let us see as to what do we know about the magnitudes and
directions of various terms in Egs. (3.14) or (3.15), and (3.17).
We have seen in Fig. 3.9b that the velocity difference vector

(V, ) is always perpendicular to the position difference vector

AC1

(R_). The fact is that the velocity analysis is carried out

A0l
only after the displacement analysis where the position-difference

vectors are obtained as solutions. Therefore the direction of the
velocity-difference vector is known at the outset of the velocity

analysis. For example in the present case RBA = 10 134.75ﬂ
33

and R =7 / 97.809°.
B402

Thus we can write
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\'j =V / (34.75 + 90) if W, is ccw (3.18)

or

v

oA VB:3A3 / (34.75 - 90) if w is cw (3.19)

Similarly, we can write

v =V /(97.809 + 90) if w is ccw
B O 802 4

4
=V /(97.809-90) if W, is cw

B O
4 2
In this book we will assume that the unknown angular velocities
are always counter-clockwise thus add 90° in Egs. (3.18) or (3.19)

and solve for the corresponding magnitudes VBA and V%O by a
33 4 2

method to be explained now. If any of the magnitudes turn out to
be negative numbers then the corresponding w has to be clockwise
and so 90° in Egs. (3.18) or (3.19) will have to be subtracted
instead of added. With this in mind, 1let us go back and
substitute the numerical values in Egs. (3.15) and (3.17). Using

Eg. (3.16) we get

* ¥

VB = 50 Z 240 + VBA Z 245.75 (3.20)
3 33
v
= 50 Z 240 + VBA (3.21)
33
Also,
* *® * *
VB= VB = 0 + ‘30 Z 187.809 (3.22)
3 4 42
or
* 4
5 = VB o (3.23)
3 4 2

Since the left hand side of Egs. (3.21) and (3.23) are the same,

we can equate the right hand sides of two and write

v -
Voo =50 /240 + Vv (3.24a)

4 2 33
vB402 / 187.809 = 50 / 240 + vB4A3 / 124.75 (3.24Db)
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The reason for equating the left hand sides of Egs. (3.21) and
(3.23) was that each of these two equations had three unknowns, so
we could not have solved for the unknowns because only three

unknowns per vector equation can be solved; but the two unknowns
*

(V, ) are common in these two equations. Although there are three
3

unknowns in each equation yet they do not add up to six unknowns
* ¥

because two unknowns, VB, are common. There are a total of four
3

unknowns, and we have two vector equations which are sufficient in
number for the unknowns to be solved. In Eq. (3.24a), we have

eliminated two unknowns and it is in the case 2a modified form.

We can use program 11 to solve Eg. (3.24b). If we do so, we will
obtain
V. = 44.291 / 124.75°
B A
4 3
V. =50.730 / 187.809°
B O
42
Since the magnitudes were both positive, the assumed
counter-clockwise rotational directions were correct. The

magnitudes of the vectors w, and w, can be obtained by

v
B A
B 43 _ 44.291
w, = R = 10 = 4.4291 rad/s ccw
BA
and
B O
_ 42 _ 50.730 _
w, = Rm) = = = 7.247 rad/s ccw
2

The velocity of the point C on the coupler can be obtained by
writing

V =V +V =V +w xR

(o4 A CA A 3 CA

50 / 240° + 4.4291k x 7.5 / (79.75%)

50 / 240° + 4.4291 x 7.5 / (79.75° + 90°)
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= 68.434 / 212.75°
The first two terms above can be added using the programmes for
vector sum or case 1. We can also obtain VC by writing
(¢}
Vo=V, + V= 50.73 /187.809 + w_, x R (3.25)

The vector R_ can be obtained by

R = R_+ R

CcB AB CA

=10 / 214.75° + 7.5 / 79.75° = 7.076 / 165°

Substituting the value for R in Eq. (3.25) we get

I

v 50.73 / 187.809° + 4.429k x 7.076 / 165°

C

= 50.73 / 187.809° + 31.339 / 255° = 69.187 / 212.555

The magnitudes and directions calculated for v, using the two

methods are quite close. To be precise, we should write V. as Vv,
3

because the velocity difference was based on w,. Moving on to the
link 5 which has pinned connection with link 3, we can write

V. =V, (3.26)

5 3
On the other hand, the motion from the 1link 5 to 1link 6 is
transmitted through a rolling contact at D. The analysis of
motions transmitted through such types of contacts is discussed in

the next section.

0

3.5 Velocity Analysis of Mechanisms with Sliding or Rolling Contact

There are two mechanisms shown in Figs. 3.10 and 3.11. In
the first of these two, there is a sliding contact whereas, in the
second one, there is a rolling contact. When two 1links have a
rolling contact, the absolute velocities of the contact points are
equal i.e. their magnitudes as well as directions are the same.
For example, in Fig. 3.11, there is a rolling contact and
therefore in this case we can write the constraint equation as

V =V (3.27)
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FIG. 3.10 VEILOCITY ANALYSIS OF POINTS ON CAMS
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FIG. 3.11
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We can obtain v, and V_ separately if the angular velocities of
3 4

both the links are known. For example we can express VP as
3

=V +V (3.28)

= w_x R + w3 x R
Similarly, we will have

VvV, =w xR (3.29)

The rolling contact is similar to a pin joint where the velocities
of the contact points are equal. But, we will see in the next
chapter that for the rolling contact the accelerations of the
contact points are not equal whereas for the pin joints they are
equal.

Suppose there is a sliding contact at point P in Fig. 3.12.

- PATH OF C, ON C,

en

FIG. 3.12
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For the 1links 3 and 4 to be in contact all the time, the
constraint equation similar to Eq. (3.27) will be that the

velocities only in the common normal direction rather than in all

the directions be equal. This can be mathematically written as
v e =V [/ 6 where 6 is the direction of the common
P3 n P4 n n
normal. Suppose w, is known and we have to find W, W, VP and
2
v

p°
3

To solve the problem we will use the directions of various
position difference vectors, for example 0., which is the
direction of the vector RCA etc. We have already defined the
common normal direction as en and therefore the common tangent
direction can be represented as (6 - 90). Now we are in a

position to write the equation
*x 42 v 132
vV =V +V + Vv
P3 A CA P C

_ 0 0
=0+ V, / (6, + 90) + vP3C / (9P3C+ 907) (3.30)

we can also write
* % v oV oV

vV =V +V + V
P B P B P_/P
3 4 34

_ o} _ 0
=0+ Rp4B / (ep4 + 90°) + Vp3/p4 / (en 907)

B

(3.31)
Because of the constraint equation, the only direction in which

the apparent motion, Vp/p, can take place will be along the
4

common tangent which is also the direction of the vector LA
3
Thus equating Egs. (3.30) and (3.31) and using Eq. (3.32) we get

0
vCA / (e)CA + 90) + vp3C / (9P3C+ 907)

_ 0 0
—VpB Z(GPB+90) +(VP/P[(99C+90
4 4 3 4 3
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This can be rewritten as
v,/ (8, +90) +y/ (ep3c+ 90°%) = VP‘113 / (eP48 + 90%
(3.32)
where
y =V -V (3.33)
The wunknowns, VCA and y, in Eq. (3.32) can be obtained from the

solutions for case 2a because VPB and / (GPB + 900) are known.
4 4

After this, we can obtain the other unknown quantities using the

following equations:

w, = . (3.34a)
CA
VPc =y + Vp/p; (3.34Db)
3 14
v
P3C
0, = g (3.34¢)
P C

It should be emphasized here that because of the slip condition,
this mechanism has 2 degrees of freedom at the contact point of

the 1links 3 and 4; thus w, and VP/P have to be given before
3
hand. If this is so then V, can be calculated from Eq. (3.34)
3

because y 1is obtained from Eq. (3.32). However, if we are
interested in finding w, and V. and not W, wWe can use an
alternate method where we avoid going through the sliding contact
point. In this case, we must know the path of C on link 4. This
path 1is easily obtained from the kinematic inversion where the
link 4 is fixed and the link 1, which is the frame in the present
mechanism, is made mobile by removing the fixed condition at its
ends. This kinematic inversion is shown in Fig. 3.13a. To find
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< EXTENSION OF LINK 4

FIG. 3.13(b)

FIG. 3.13(a)
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FIG. 3.13 CONCEPT OF EXTENSION OF A LINK
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the path of C2 on 1link 4, we extend this 1link (link 4) as shown in
this figure. How this extension is achieved is shown in Figs.
3.13b to 3.13d. Imagine that links 3, 4, and the extension, are
cut-out of a large plate 1/4 inches thick. We can lay the link 4
on the extension and weld them together as shown in Fig. 3.13b.
In this way the extension becomes an integral part of the link 3.
Now we assemble the mechanism as shown in Fig. 3.13a. If we allow
the link 3 to move around link 4, the path of C, on C,  (a point
directly below C, but on the extension) will be as shown in Fig.

3.13a. If we refer to Fig. 3.14, here 1link 1 is fixed and link 4

EXTENSION OF LINK 4

FIG. 3.14
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along with its extension can rotate about B. The angular
velocities of the 1link 4 and extension would be the same because
they are welded.

To obtain w, we can write

. o W eV

V. =V +V =V +V +V
c A C_A B CB c_s/c
2 2 4 2 s

Using the second equality we can write

(o]
o+v¢:B é(e€B+90)+vacZecm-—o+vmé(9“+90)
4 4 2 4 2 4 2 2

(3.35)
In the Fig. 3.14, 6. is clearly shown. It is along the
2 4

tangential direction to the path of C, on C at this instant of

time. If we use the second equality in Eg. (3.35) we can obtain

V., and Ve . using program 11 (case 2a modified). Next, we can
2 4

obtain w, as given in Eq. (3.34). If the slip velocity or v is

3

not given, we can not obtain W, .

This mechanism has two degrees of freedom which can be
ascertained by using Eq. (1.2). There are 3
single-degree-of-freedom joints, one two-degree-of-freedom joint,
and there are four links. Thus we require two specifications to
completely define the motion. For example, these can be w,, and
w,. These concepts are illustrated in the example given below.
Example 3.2

In Fig. 3.12, find the angular velocities of the links 2 and
3 (a), assuming a rolling contact at P, and w, = 5 rad/s ccw, and
(b) if there is a slip at P and V., = 6 in/s / 45°. Assume ©,

3 4
same as before. Given: R =5 / 100°, R = 1 / 135°, R, =
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_ (0]
5.646 / 85.694; and R, =2 / 0.
Solution

(a) In the case of rolling contact, Vp = VP. We can also
3 4

write
- vV v/ *y/

V =V +V +VP

P A CA C
3

0 [0}
=0+ vV, [/ (e, +90°) + VP3C / (eP3C+ 90°) (a)

and

i

0O +w kxR /e
4 P,B P,B

I

5k x 5 / 100°

25 / 190° (b)

Equating Egs. (a) and (b), and substituting the values for eCA and

2] we obtain
P3C

25 £ 190 = V_ / 175.694° + vp3c / 459
This equation can be solved using the program 2 which is for
the case 2a. The solution of this problem is
V, = 18.943 /175.694°, and
vP3C = -8.087 /45° = 8.087 / 225°

The angular velocities can now be obtained as

v
P C
- _3 _ -8.087 _ _
ug = R = T = -8.087 cw (c)
PC
and
v
. _cta _ 18.957 _
ug =R T "5 &ig = 3.358 ccw (4)

CA
The rotational directions of these two 1links can also be
understood from Fig. 3.15 where the 1links at this particular
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Ve c
FIG. 3.15
instant are separately shown. The direction of rotation of the
link 2 will obviously be counter-clockwise. To understand the

direction of rotation of the 1link 3, we should use a hinged
connection on this 1link at the point which is the second subscript
in the velocity difference expression; this is € in VPC.
3
Clearly, this link also rotates in the clockwise direction.

Now, it is worth understanding the absolute velocities of
various points discussed above. The magnitude of the velocity
vector at A will be zero because this point is fixed to the
ground. The absolute velocity of the point C will be the
vectorial sum, not the algebraic sum, of the velocity of the point
A and the velocity difference,vCA . This velocity difference is
obviously defined in the vectorial sense because a velocity is a
vector quantity which requires specifications of magnitude and
direction. Since v, is zero, the velocity of the point cC, Vo
will be equal to vaﬁ Thus VC can also be given by 18.957 /

175.694°. If we move on to the link 3, the velocity of the point

P3 will be sums of VA, “m and VCP . Since VA is zero, we will
3

have
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