CHAPTER 4

ACCELERATION ANALYSIS

4.1 Time Derivative of a Constant Magnitude Rotating Vector

Fig 4.1la shows a particle at points P1 and P2 at an interval

of time At. The position vector of P in the curvilinear can be
represented by the set of coordinates (rl, 6.). In Fig.4.1b,
various vectors have been redrawn from a common point. The

magnitudes of ir and it are equal to 1 and from the geometry, the
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magnitudes of dir and dit will be equal to 1 d6. The direction of

dir will be of iJ and that of di, -i. If At —> 0, one can write

dir de .

aE = —ac - lj = @ lj and (4.1)
dit de .

ac = a€ (—ir) = -8 ir and (4.2)

If iz represents the third unit vector, we can rewrite Egs. (4.1)

and (4.2) as

dir

gc T Lxi and (4.3)

dit

Ix = WX lt (4.4)
Here, we have assumed w = 8 ik. Thus, the time

derivative of a constant magnitude rotating vector is the cross
product of its angular velocity vector and the vector itself.
This relationship is valid not only for a unit vector but also for
any constant vector. If we have a constant vector R attached to
the (x,y,z) coordinate system which is rotating with an angular

velocity w as shown in Fig. 4.1c, then
d R = W R 4.5
(g (R), = wx (4.5)

4.2 Acceleration of a Moving Point
The position vector of a particle in motion as shown in
Fig. 4.l1a can be written as
Rp = ri (4.6)

The velocity and acceleration equations of this particle are
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obtained by differentiation of this equation as

.—.. d )
VP=RP'—rlr+r"—a—t-(lr)

=r i +r(wxi )
r b r
=ri +rwi (4.7)
r t
A =R ={r ir + r{w x ir )} + [r(w x ir )

+r(é X ir) + r{w x (v x ir )}]

i

{r ir +row it } v {ruw it + r o it - W°r ir}
= ( f.— wzr) ir + (r o + 2 f w ) it cee..(4.8)
In the above equations, w and « are the first and second
derivatives of 6. Both the w and a vectors will be perpendicular
to the plane of the paper. An important point to note is that
there is no rigid 1link connecting O to P but it is the position

vector Rp which goes through the rotation as well as variation in
1

its magnitude as the particle moves along the curve. These
equations have been written under the assumptions

w = é i and (4.9)

o =wi (4.10)
Egs. (4.7) and (4.8) take simple forms when the trajectory of the
particle 1is a circle or a straight 1line. For circular
trajectories we will have £ = 0 and £.= 0. If we locate the point
O in Fig. 4.l1a at its center then using Egs. (4.7) and (4.8) we
get
V,=oil+rwi =r o i (4.11)

P t

A
p

(-wzr)ir+ (ra)i (4.12)

These vectors are shown in Figs 4.2a and 4.2b. For the velocity,
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there is only one component along the tangent whereas for the
acceleration there are two components, one along the tangent and
the other towards the center (it is also called the centripetal
acceleration). It shows that even if the particle moves with a
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constant angular velocity i.e a = 0, still there will be a normal
component of the acceleration.

On the other hand, if the trajectory is a straight line
as shown in Fig. 4.3a, we can always align our reference axis to
coincide with the trajectory as shown in the Fig 4.3b. If we do
S0, we can write

é = é.= 0 or é (W) = a =20 (4.13)

Now if we substitute Eq. (4.13) in Egs (4.7) and (4.8) we would

get
V = ri =vVi and (4.14)
P r r
Ap = (r)1r= a i (4.15)
P2
P2
ﬂ
Fﬁ <—REFERENCE AXIS
0
REFERENCE AXIS O
FIG. 4.3(a) FIG. 4.3(b)
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where V and a are the magnitudes of velocity and acceleration of
the particle.
In general, the equations of trajectories may be more

complicated than that of a straight line or a circle. To use Egs
2

(4.7) and (4.8), we should know the expressions for gg ,—%Eg— '
2
—g%—,and—%gg—.The evaluation of these derivatives is very simple

if the equation of the curve is given in time-parametric form i.e
r=f1(t) and 6 = fz(t).

For example, suppose we are given

2/3

e =t and

r = 100 t°
In this case we will have

f = 200 t,

r = 200,

6 = 2/3 £°
and 6 - :% 73

All these derivatives can be evaluated at any instant of time and
substituted in Eqs (4.7) and (4.8). In another case, the equation
of the curve can be given as r = f(oe). In this case, we would
have to use the chain rule of calculus and the following

relationships would be valid:

L df(e) ;
r = —d5 6 and (4.16)
. 2 . ..
_ 4d"f(e) df (8)
r = deg—— 8 + 35 (2] (4.17)

Out of four quantities r, r ,8 and @ , 1f two are known then the

158



other two can be calculated using these two equations. One other
possibility that can commonly be encountered is that the equation
of the curve is given in terms of cartesian coordinates. This
equation can easily be converted into the polar coordinates using
X =r cosf, and y = r sing.

Finally, in certain situations it may be advantageous to
think in terms of normal and tangential components of the
acceleration which are in mutually perpendicular directions. If
one wants to know these components then, the first thing would be
to use Egs. (4.7) and (4.8) to calculate the accelerations along
ir and it, and then resolve these vectors along the radial
(towards the center of curvature) and tangential directions using
the transformation matrices discussed in Chapter 2. However, if
we set up the reference axis passing through the center of
curvature, as was done in the case of a circle, the second step of
transforming these accelerations into radial and tangential
directions can be avoided. In that case, our origin should be at
the center of curvature and the reference axes, parallel to the
radial and tangential directions. Thus, ir will be along the
radial direction and it along the tangential direction.

4.3 The Derivation of the Acceleration Equation Involving Moving
Coordinate System
The path of a particle B on a moving coordinate system

is shown in the Fig 3.6. The coordinate system (X1- o} —Y;)

1

itself 1is rotating with an angular acceleration a and the

acceleration of its origin is represented by A, - The center of
1
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curvature of this path (the apparent path) is C. The actual path
of the point B in the (X, 0, Y) system, the frame, will be quite
different. The purpose of this derivation is to relate the
absolute acceleration of B to its apparent acceleration, i.e. the
acceleration observed from the (X-0-Y) system. The point B is a
moving point, which for the sake of clarity, can be thought of as
a person jogging on the deck of a ship floating in the ocean.
There is another point B which can be considered as another
person standing, not moving, on the deck. The system (X-0-Y) is
on the shore and is considered as the inertial coordinate system.
Now we will derive the acceleration equation for B,
the person who is jogging. 1In this situation B, is a fixed point
with respect to (X1— 0, -Yl) system but B is a moving point.

Therefore, we can write

d
ae(¥; ) =0
1
da -
at (Xg) = XB/B1
X = X
B B
1
Y =Y , and
B B
1
RB 01= RBol = (xB i+ Y, 31) = (x81l + ylj) (4.186)
The position vector of B, will be
R =R + R + R
B 0 B O B/B
1 1 11 1
R}3 = Ro + (Xsl1+ yle) (4.17)

1 1
Differentiating this equation once, we get
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— _ 5 d . .
v =R =R . t at ( Xpl,* yBJI)

. . . di1 dj1
R01+ ( X811+ YBJ1) + dt xB+ yB dt )

]

= R01+( x311+ yle)+ Qx( x311+ yle)

(4.18)

)

1

(V. ) +wx (R ) (4.19)
1

XYz + B/B1"XY 2 - XY Z2Z
i1 1 111

The first term above is the velocity of point O ; the second is

the velocity of B as seen by B, who is stationary with respect to

the ship. It is important to note that this velocity of B is seen

by a person who can be considered coincident with B. In fact we

can rearrange Eg. (4.19) and write

vB - {(VO )XYZ + Lx (RB O)XYZ b VB/Bl))(YZ
1 1 11 111

- (V)

(v, )
XYz B/B1’X Y Z
1 1151

Here, we are defining the velocity of B, and then vectorially
adding the apparent velocity of B with respect to B1
Differentiating Eqg. (4.18) once again we obtain

.. di_. . dj

- _ .. .. . .
VBI— A%_ Rol+{( Xgl,t yle) + dat %sT Yy dt )}

lex (xl+yd) +ex (xi+yd) +ex (xi+y3))

I

RO + { Aa/ + w x ( X311+ yle)}

1

B1
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= R+ A +20 VB/BI / ( e, + 90)
B/B1

2
+ RBOIZ (6501+ 90) + w RBolé (GBO+180)

The first is the acceleration of the point 0,; the second term
will have two components as explained in the Section 4.1 (Eq.
(4.8)) has to be used. We can also use the normal and tangential
acceleration concept. The third term is the Coriololis
acceleration and is explained in detail in the next section. The
fourth term 1is the tangential component of the acceleration
difference of B, with respect to 0. Finally, the fifth term is
the normal acceleration difference of B, with respect to o,.

We can use RBO = RBO in Eq. (4.17) and arrive at
1 1

A, =H (Aol)xyz *oaX (Rslo)xyz tex (wx (RBlo)xvz}
t2ex (VB/Bl)xvz * (AB/Bl)XYZ ...(4.23)
= AB1+ 2 wx (VB/Bl)XYZ + AB/B1 ... (4.24)

If we compare Egs. (4.19) and (4.24) we will find that it is not
sufficient to add the apparent acceleration of B with respect to
B1’ to the acceleration of B1’ to obtain the acceleration of B;
one also has to add the Coriolis term. The computations, involved
are the cross products of vectors as well as their additions which
can easily be done using the software mentioned in Chapter 2. 1In
any case, all the vectors in either Eq. (4.23) or Eq. (4.24) must
be expressed in the same coordinate system for adding. One can
use the rotational transformation matrices discussed in Chapter 2.
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4.4 Coriolis Acceleration
The movement of a slider along a rotating rod is shown

The rod is rotating with uniform angular velocity w

in Fig 4.4a.
0 and the slider moves outwards with a uniform velocity Vv
v / 90° at any time t. We can use

i.e «
relative to the rod i.e Vp/
P

21

the following relationships from planar geometry:

A )
/

/

/
1
f !

-

010 -------- -t )
| ey

'
L?J

P2 (t:t1+At)

(t=ty) /I
/

FIG. 4.4(a)
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Arc Q/ P/ = Arc Q_ P’ - Arc Q Q’,
1 2 1 2 171

Arc Q1 P; - Arc PlP;

Q,0 46 - PO A8 = (Q 0 - P 0)A®

il

Q1P1 A8

(V At) Ae (4.25)
For small angle A8, arc Q; P;= chord Q; P;. If we analyze the
movements of the slider as well as the rod, we will find that the
slider moves a distance equal to P1 Q1= P{ Q;, in the time At when
the rod changes its position from Q0 to P’ 0. Thus if we add the

displacements R, and R, ,.we will obtain Ro.p- These two

1 2 11 12

displacements are due to w and Vp/p respectively. The remaining
2’1

displacements vector R ' is due to the Coriolis acceleration,
21

A If we write the expression for displacement due to this
acceleration, we will have
chord Q! P/ = 1/2 A_(At)? (4.26)
Equating the right hand side terms of Egs. (4.25) and (4.26), we
will have
(1/2) A_(At)*= (V At)Ae (4.27)
For small time interval i.e At—>0 this equation can be rewritten

as

_ lim Ao _

In the vector form we can write

A =2 wxV (4.29)
c - pz/p1

The magnitude of the Coriolis acceleration is given by Egq. (4.28)
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and the direction by Eq. (4.29). To know the direction, we simply

rotate the apparent velocity vector Vp/p in the direction of w
2N

as shown in Fig. 4.4b. Another important fact to note is that the
Coriolis acceleration can be calculated from the quantities known
from the velocity analysis only; they are the angular velocity w

and the apparent velocity Vm?which were discussed in Chapter 2.
1

v
P /P
2/

Ag20X y,z »

b\:.

FIG. 4.4(b)
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4.5 Direct Contact and Rolling Contact

We have seen in Chapter 3 that there are two kinds
relative motions between any two rigid bodies. There exists &
apparent slipping velocity or no such slip occurs between the two
bodies in direct contact. In rolling contact, no slip is possible
which implies that the apparent velocity at such a contact point
is zero. Let us derive here an expression for the apparent
acceleration of a point in rolling contact.

Figure 4.5 shows a wheel (link 3) in rolling contact
with a straight fixed 1link 2.

We can write

\'4 =V = 0 and Vp = 0

Py Py 3P,

- - .
—— -

2

VIS LTITTTIITTITTT 7777770707777 707, /i

FIG. 4.5
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Similarly, for the acceleration of P, we can write using Eq.

(4.24)
0
A =2a + A" + 2wV e + 90
p3 p2 p3/p2 wz p3/p2Z( v )
PP
32
A = s A
P3 P3P P2
t r
= (A )"+ (A )
P3P, P3P,
[ 2
— P /P} t r
= 37%2) [/ (6_+ 180) +( A L) [ 6.+90 + A
3 F2 2
- t
=0/ (6_+ 180) +(41\p /o ) (6_+90) +0
3772
Example 4.1: For the mechanism shown in Fig. 4.6a, the following

data are given:

— 0 _ o]
RAO2 = 0.5 / 30, R, =0.5/330 ,

R = 0.5 / 150°, o, 150 rad/sec® (cw)

BA
and w, = 30 rad/sec (cw).
Find V_, A and «.
B B 3
Solution
Velocity Analysis
Link 2
— — = — O
vV, = w, RAOZZ (30 - 90) =30 x 0.5) / -60

15 / 300°

Link 3
V =V +V

(4 A CA

VC[ 0

15/ 0

15 / 300° + (WR,)/ (330° + 90°)

15 / 300° + 15 / 60° (Using program 11)
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Therefore,

w, = 15/0.5 = 30 rad/s ccw

V =V + V
B A BA

= 15 / 300° + (30 x 0.5) / (150° + 90°) = 25.98 / 240°

Acceleration Analysis

Link 2
n  _ 2 o, _ 2 s} o
A, =W, R/ (6,, * 1807) = (30° x 0.5)/(30° +180°%)
2 2 2
0
= 450 / 210
t _ _ [s] - o _ 0
o =« RAOZ / (eAoz 90") (150 x 0.5)/(30 90°)
0 o}
=75 / -60° = 75 / 300
_ o) o _ 0
AA = 450 [ 210 + 75 [ 300" = 456.207 Z 219.462
Link 3

A=A + A"
[4 A CA

_ 2 0 0
ACZO = 456.207 é 219.462 + W, RCA Z (330°+180")

+ At
CA

0 0
+ o R, /(3300 + 90°)

0 = 0 2 o]
A /o0 456.207 / 219.462° + 30°x 0.5 / 150
0
+oa RCA[(GO )
Using program 11 we get

_ ]
Ac = 704.426 Z 180

o, = 74.997/0.5 = 149.994 rad/s ccw

_ 2
Ay =2, + W R, /[ (6,, +180) + a R/ (6,, + 90)

A
456.207 / 219.462° + (30°% 0.5) / 330°

+ (149.994 x 0.5)/ (150° + 90%)

456.207 / 219.462° + 450 / 330° + 74.997 / 240°

579.899 / 270° (Using program 15)
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Graphical Solution:
Velocity Analysis: The velocity of the point A is calculated

first and it will be equal to W, x RM) = 30 x 0.5 = 15 m/s. Next
2

we write the equations for links 3 and 4 for the point C as

W " v/
V =V +V = v (case 2a)
C A CA cC4
LINK 3 "LINK 4~
"2

We draw lines parallel to v, from the tail of V, and another
line from the tip of V, and another 1line from the tip of v,
(Perpendicular to R.,). In this way obtain the point C. TO get
the point B, we draw the image of the 1link BAC by extending the
line CA in the velocity diagram in the proportion :

VBC / VAC = RBC / RAC

After locating the point B, we join it with the origin to get
the absolute velocity of this point.
Acceleration Analysis: In the acceleration analysis, we start
with the calculation of the normal and tangential components of

the acceleration of A given by

2

"o A0, 152

AAO2 = LTQT—] [ (8,, + 180) = —2= /(30 +180) (b)
t

AAOZ = (a, RME) /(8,, = 90) = (150 x 0.5) /(30-90) (c)

To calculate the acceleration of the point C we write equations

for links 3 and 4 again which are

W *Vt 44 v *Vt
A =47 + a =A + A" + A
¢ le____’c A__c ¢ d)
LINK 4 LINK 3 (
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To draw Eq.(d), we draw a line of magnitude ( Rm ] from the point

CA

‘a’ (acceleration diagram ) in the direction of R . - Since the
tangential component’s (A;) magnitude is not known, we just draw

a line perpendicular to R, . direction from the tip of the AZA

vector. Since the normal acceleration AZ = 0, we simply draw a
Y/
line parallel to the vector Aé. The point of intersection gives

the point C. If we measure the vector A;‘then we can obtain

t

ACA 85 2
o, = ~—§;r- = 5% (scaled) = 170 rad/s (e)
The acceleration of B can be calculated by two methods. In the

first method we write
A =2a + A +at (f)
B A BA BA

We know AA from above and the other two terms will be

2
ABA = W] RBA Z(E)BA + 180) (9)

2

- [ Z:: ] /(6 + 180)

15°
6.5
450 /330°

] /(150 + 180)

A;A = (a, R,) /(8 + 90) (h)

= (170 x 0.5) /(150 + 90) = 85 /240°
In this way all the three vectors in Eq. (f) can be added to
locate the position of point B in the acceleration diagram.
In the second method we use the scaling factor in the
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acceleration image concept. We can see in Egs. (g) and (h) above
that A;kand A; are at right angles to each other.

Thus we can write

_ n ;2 t 2
'ABAI - \AABA' + ,ABAl
= v/(w2 R )2'+ o R
3 T BA 3 'BA

2
[/} + « ]
BA 3 3

R
= R, x SF (1)

Where the Sealing Factor (SF) in the case of the acceleration

difference of two points on link i can be given as

_ 4 2 .
(SF)i = w o+ o (1)
In this problem we can produce the 1line ‘ca’ in acceleration

diagram such that
| = [x/304+ 170° J 0.5

= 457.957

|A
~BA

to locate the point b. The acceleration AB can be measured to be

equal to 580 m/s” 12710.

Example 4.2

For the mechanism shown in Fig 4.7a the following data are given

RA02= 0.040 / 120 , R, = 0.08 / 18.704 ,
RO4B= 0.07 / 239.214, R, = 0.044 / 352.13
w, = 50 rad/s (cw) w, = 33.75 rad/s (cw)

W, = 44.286 rad/s (cw)

Find A ,a and «
c’'=3

—4
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FIG. 4.7 (a)

FIG. 4.7(b)

FIG. 4.7(c)
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Solution

Link 2

Link 3

Link 4

Equating Egs (a) and (b) we get

121.383 Z 252.593 + (a3RB

or,

34.021 / 3.568° + (« R

Using program 11 we get

34.021 / 3.568° + (-29.555) / 108.704°

Therefore, we can calculate

we can write

A
c

A

B

100 / 300° + 91.125 / 198.704° + (R

A

A
B

B

_ 2 - 2 o _ 0
= W R, ( 50" x 0.04)/ 300 100/ 300

2
A+ w R /198.704 + a R/ 108.704

[0)
5a) [ 108.704
121.383 / 252.593° + (a,R_,) / 108.704°

cees.(a)
=A +W R /239.214° + « R/ 149.214°
] 4 "BO : 47'BO :
2 4 4
= 0 + 137.287/ 239.214° + « R /149.214°  ..... (b)
4 804

) [/ 108.704° = 137.287 / 239.214°

(]
+ (a4RBOZ / 149.214

[0}
s, ) / 108.704

0
(a4RBoz Z 149.214

= (-50.557)/ 149.214°

—29.555 _ 2
—~ o5 = 369.428 rad/s Ccw,
—50.557 _ _ 2
o7 = 722.243 rad/s Ccw,

2 8} o
A+ R%[ 172.139 + “3&31 (352.139° - 90)

100 / 300° + 33.75°x 0.044 / 172.139°

+ (369.438 x 0.044) / 262.139°
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= 100 / 300° + 50.119 / 172.139° + 16.255 / 262.139°

= 95.868 / 268.882° (Using program 15)
Graphical Solution:

Acceleration of A:

A 0 A0
2

n Vi 2

o = 0 =4 /0.4 = 100 m/s

Acceleration of B:
We can write equations for links 3 and 4 as

wowW v

A=A + A" 4+ at
B A BA BA
VW 'Vt
= A" 4+ A (a)
BO BO
2 4 4
n VBA 2 2 0
A, =gz = (2.7)°/0.08 = 91.1 m/s® / 198
2
n Ve 2 2 0
0 = Bo- = (3-1)°/0.07 = 137.2 n/s® / 240
4 4

We plot the vectors which are known in Eg. (a) and the unknown

tangential components we can scale. The results are:

| A, | =28
BA
t
A, |
_ BA _ 28 - _ 2
= xg— = .08 — ~350 rad/s cw
BA
| A, | =48
BO
4
t
BO
_ 4 _ 48 - _ 2
o, = B = 005 = ~685.7 rad/s" cw

BO
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Acceleration of C:

It is given with respect to A and B and the equations will be

W . )

n — n t
AC = AA + I\CA + ACA AB + ACB + ACB (b)

We know the following:

n V2

_ ca_ _ 2 _ 2
A, = —on (1.5)%/0.045 = 50.0 m/s
2
n Ves 2 2
A, = —5 = (1.5)%/0.045 = 50.0 m/s

Similarly we can add the tangential acceleration also because o,
and o, are known from above. Acceleration of C can also be traced
according to its relative position in the displacement diagram by
plotting the acceleration image of the link 3. It is easy because
we know the locations of two points A and B. If we do this, we
will find

A_ = 100 n/s® / 266°

Example 4,3

For the velocity analysis of the mechanism shown in Fig 3.24 was

performed in Example 3.3. Find a, o AB and AB when o, = 10
3 4

rad/sz(ccw). Use the other results obtained in the example.

Solution

Link 2

_ 2 0 0 0 0
Az- AO: W, R“zozz (45 + 180°) + aZRAOZZ (45" + 90)

= 40°x 5 / 225% (10 x 5) / 135°
= 8000 / 225° + 50 / 135°
= 8000.156 / 224.642°
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Link 3

2 0 0 0 0
I\B3 = AA-;- (.4)3RBA Z (80.881°+ 180°) + 0(3RBA Z (80.881" + 907)

8000.156 / 224.642° + (-7.060)°7 / 260.881°

I

(o]
+ ( a  7) / 170.881

i

8283.980 / 226.069°+ (7 « ) / 170.881° ---(a)
Link 4"

‘It is better to locate the moving coordinate system on the
guiding link (link 4) and let the guided 1link (slider) move on the
guiding 1link. In this way the error in the Coriolis term is
avoided. The apparent path is quite clear.

A =A+ 2wV / (8 + 90% + a
B B 4 B3/B4 v
3 4 B3/B4

B3/B4

= (-7.060)%(18.382) /(145.470 + 2(-7.060) (168.315)/170.881 + 90)"

+ A/ 350.881 + ( @ R ) / (145.470 + 90)
1

B3/B4 4 B40O
AB3 = 916.225 Z 145.470 + 2376.608 Z 80.881 + A;3/B4 Z 350.881
+ (18.382 ) / 235.47
= 2890.763 / 97.517 + A’/ 350.881
+ (18.382 a) / 235.47 (b)
Equating Egs. (a) and (b) we obtain
8283.980 Z 226.069 + (7 a3) Z 170.881 = 2890.763 Z 97.517 +

t

paps L 350.881 + (18.382 a) [/ 235.47

or

10335.84 / 238.703° + o (7 / 170.881° + 18.382 / 235.47°)

= A/ 350.881
B3/B4

or,

10335.84 / 238.703 + o, 22.301 Z 219.00 = a‘

/ 350.881
B3/B4
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If use program 11 we will get

10335.84 / 238.703° + (-12855.24) / 219.00° = 4680.346 / 350.881°

Therefore we can write

A = 4680.346 / 350.881
B3/B4

«, = o, = -12835.24 / 22.301 = -576.442 rad/s cw

Example 4.4

The velocity analysis of the mechanism in Fig 2.28a was performed

in Example 3.4. Given that

w, = 30 rad/s ccw, W, = 0.297 rad/s ccw,
w, = -0.639 rad/s cw, W = -0.682 rad/s cw,
RAO1 =2 / 100, RAC = 20.099 / 15.709
R =39.916 / 5.660, R. = 41.284 / 25.419,
Rm)= 20 / 330, Rn;= 20/ 330
o = 10 rad/s (ccw) , and V = =59.702 / 15.709

2 A2/A3

59.702 / 105.709°

I

59.702 / 195.709

Find «_ , « , A and A
3 4 D E

Solution:
Link 2

_ 2 0 o, _ 2 o _ 0

A= o RAOIZ (100" + 180°) = (30°x2) /280 1800 /280 (a)

Link 3

A =A+ 2V / (6 +90° ) + at

A A 3 A2/ A3 v A /A

2 3 A2/A3 2 3

_ 2 0 0
= W] RA3C / 195.709° + “3RA3<:Z 105.709
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[4] (o] t
+ (2 x wx 59.702) / (195.709° + 90°) + A15“3

= (0.297%< 20.099) / 195.709° +(a, x 20.099°)) / 105.709°

/A
2 3

+(2 x 0.297 x 59.702) / 285.719° + AI

= 1.773 / 195.709° +(20.099 «, )/ 105.709°

+35.463 / 285.719° + A:/A -—--(b)
2 3

Equating Egs. (a) and (b)
o _ _ ) 0
1800 1280 == 1.773 [ 195.709" +(20.099 oc3 )Z 105.709

+35.463 / 285.719° + A,

or,

1764.537 [/ 279.943 = (20.099 «_ )/ 105.709 + A°

ang L 15709

Using program 2 we get
1764 .537 1(279.943) = ~1755.609 Z 105.709 + (=177.276) [ 15,709
Therefore, we can write

o, = -1755.609 / 20.099 = -87.348 rad/s cw

= -87.348 k

t
A2/A3

- 2 [0} 0 [0} 0
A W R/ (25.419° + 180 )+ R/ (25.419° + 90°)

= 177.276 / 195.709

=(0.297)°(41.284)/ 205.419°+(—87.384)(41.284)[ 115.419°

3.642 / 205.419° + 3607.571 / 295.419°

i

3607.573 / 295.361°
A=A +A" 42t
D ED ED

2 0 0
AE = éD + w4 RED Z (eED - 1807) + a4RED Z (GED+9O )

A/ 0 = 3607.573 / 295.361° + {(-0.639)2 x 20 } / (330°-1807%)
E
0 ¢} 0
+ («, 20°) / (330° + 90°
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3607.573 / 295.361° + 8.166 / 150° + (20 a,) [ 60°

0 0
3600.857 Z 295.287 + (20 a4) [ 60
If we use program 11 we will get
3417.863 / 0° = 3600.857 / 295.287° + 3759.499 / 60°
Therefore, we obtain from above

A
E

3417.863 / 0o°

I

(04

. (3759.499)/ 20 = 187.975 rad/s ccw

Example 4.5
The velocity analysis of the mechanism shown in Fig.2.29(a)

was performed in Example 3.8. For this mechanism it is given that

a = -7 k , w = -3.544 k,
2 4
w =5 Kk, w_ = 4.392 K,
2 s
w, = -3.393 k, w, = -2.878 k
Find LN Oy Oy AD and AH .
Solution:
Link 2
= (W R ) /(6 + 180°) + R /(e + 90°%
A2 2 A O AO 2 A o AO
21 1 2 1 1
2 0 0 0 0
= (5" 2.5) / (150° + 180°) + (-7 x 2.5) / (150° +90°)
= 62.5 / 330° + 17.5 / 60°
= 64.904 / 345.642°
Link 3
_ 2 0 0
A, = A+ W R /(6. + 180°) + aR /(6 + 90°)
A, = 64.904 / 345.642° + (-3.393)%10 /(214.658° + 180°)
+ (10 «)) / (214.658° + 90°) (a)
Link 4
_ 2
A = “’4Rsozl(eso: 180)  + a4RBO§(QBO: 90)
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= (-3.544)%7 /(97.713 + 180) + 7 a, /(97.713 + 90) (b)
Equating Egqs (a) and (b) we get
64.904 / 345.642 + 115.125 / 34.658 + 10 a, [/ 304.658
= 87.919 / 277.713 + 7 a, / 187.713
Using program 15 we get
(199.704) [ 43.118 + 10 a3 Z 304.658 = 7 a4 Z 187.713
Using program 11 we obtain
(199.704) [/ 43.118 + (129.789) / 304.658 = (-221.586) / 187.713
Now we can write

129.789

3 = 10 12.979 rad/sec Cccw.

R
il

« = 32221586 _ 5y 4o5 rad/sec  cw.

A =A A+ W, R, / (eCA+ 180) + aBRCAZ(eCA+9O)
A, = 64.704 / 345.642° + (3.393)%(7.496)/ (79.826° + 180°)

+ 12.979 x 7.496 / (79.826° + 90°)

= 64.704 /345.642° +(86.297)/259.286° + 97.291/169.826°

= 96.953 / 239.692° (Using program 15)

Therefore we have

96.953 / 239.692° (c)

A = A
C c
5 3

Links 5 and 6

We locate the moving coordinate system on the 1link 6, the guiding

link, and write the equation

t

A=A +a° + A
<, cs/ce cs/ce

C
S

_ 2 0 0 0 )
= w, R_/ (14.032° +180°%) + a, R/ (14.032° + 90°%
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t
CS/CG

o
+ 20V / (e, + 90 ) + A

6 c5/C6 Z 10.032
CS/CG

Substituting the value for AC from above, we get
5

96.953 / 239.692° = {(-2.878)% x 6.422} / 194.032°
0]
+ (@, 6.422) / 104.032

+ 2 (-2.878)(14.599) / (90° + 10.032% + at / 10.032°

cs/ce
96.953 / 239.692° = 53.193 / 194.032° +
0
(«, 6.422) / 104.032° +
84.032 / (280.032°) + A'  / 10.032°

cs/ce
or,

o _ 0 t 0
16.901 Z 135.041" = (6.422 as) Z 104.032° + ACS/C6 Z 10.032
Using program 2 we get

16.901 / 135.041 = (13.877) / 104.032 + ( -8.728) / 10.032

Therefore we obtain,

_ 13.877 _ 2
CXG = W = 2.161 rad/s (CCW) .

t

cs/ce = -8.728 Z 10.032 = 8.728 Z 190.032

_ 2 0 0 0 0
Aﬁs—.(a% R ) / (30.945° +180°) + (aezgw) / (30.945° +90°)

={(-2.878)7(6.858)} /210.945° +(2.161) (6.858)/ 120.945°
= 54.568 / 210.945° + 14.820 / 120.945°

= 56.545 / 195.751°

A =A + A + (2 V w) / (8 + 90%)
D D D /D D /D 6 v
5 6 5 6 5 6 DS/DG

A
D
5

I

56.545 / 195.751° + A;/D ( 100.032° + 180%
5 6

It is given that V, ,, = 0 because of the rolling contact.
5 6

We can also write an equation on link 5 as
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_ 2 ) ) ) )
A5 = ACS+ W, R“scsl (100.032° + 180°) + o RDscs / (100.032° + 90%

(f)
Substituting for A. from Eq. (c) and equating Egs. (e) and (f) we
5

get

8.728 /190.032 + { (4.392)°x 2 } / 280.032 + 2 « [/ 190.032

= 56.545 / 195.751 + A; Z 280.032

5

/D

6

8.728 1190.032 + 38.579 Z 280.032 + 2 o Z 190.032 = 56.545 [ 195.751

t

* Bl ne / 280.032
- t
57.836 Z 335.308 + 2 as Z 190.032 = ADS/D6 Z 280.032
Using program 11 we get
57.836 1335.308 + 47.536 1190.032 = 32.945 l 280.032
¢ = 32.945
DS /D6
o = _£15Z§£ = 23.632 rad/s2 (ccw)
Link 6
_ 2
AH = w6 RHF Z (GHF+ 180) + ot6 RDF Z (GHF+ 90)

= (-2.878)°% (10.308) / (24.068 + 180) +
(2.161 x 10.308 ) / (24.068 + 90)
A = 85.380 / 204.068 + 22.756 / 114.086
= 88.361 / 189.144
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Complex number 37, 127
Complex vector 37-38, 127
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Connecting rod 3

Constraint 10, 12

Coriolis acceleration 163-164
Coriolis term 162, 177
Coupler 79

Coupler point 56

Crank angle 84

Crank-slider mechanism 1, 3, 9, 71

Cross product 47, 69, 97, 162

Degrees of Freedom 9-10, 114
Direct contact 166

Direction cosine 18

Displacement analysis 128, 145, 149
Displacement diagram 120-121, 176
Displacement equation 125, 127
Displacement vector 82

Dot product 47, 69

Double-Rocker mechanisms 6

Dynamic analysis 4

Dynamics 3
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Four-Bar mechanism 1, 9, 54, 79, 131
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Position difference vector 21-22, 80
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Prismatic joint 4

Reciprocating Motion 1

Relative velocity 99

Revolute joint 5-6

Rigid body 3, 14
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Rotating vector 153

Rotational transformation matrix 27

Slider 1, 163, 177
Sliding contact 107, 109
Slip 114, 166

Slipping velocity 166
Spatial mechanism 6
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LISTF1.WK3

PAGE NUMBER LINE NUMBER ERROR CORRECTION
3 24 repeated words
12 10{n=4 n2=4
18 3|{First Rpo Rpo cap
21 10|vector position
21 10ivector position
28 7 Matrix [2 6] Matrix [2 3]
28 8 6 3
34 lifrom the tail |{from the head
35|Fig 2.12 b Incorrect labelling
35|Fig 2.12 b Incorrect labelling
39 2|= (A cos..) = A (COS..)
39 2|= (A Ccos..) = A (COS..)
39 2|A should be outside the bracket
39 __2/A should be outside the bracket
39 15/CCOS(.)+3SIN(. C(COS(..)+JSIN(..))
39 15/CCOS(.)+3SIN(.[C(COS(..)+3SIN(..))
39|Egn 2.24 C should be outside the bracket
39|Egqn 2.24 C should be outside the bracket
47 12/0.4 O x 4
47 120.4 0 x 4
47 Line 12 Ex.2.4!D in place of C

47|Line 12 Ex.2.4{D in place of C

61 23 Equ (2.72)= Equ (2.75)
61 23 Equ (2.72)= Equ (2.75)
61 24 Equ (2.73)= Equ (2.76)
61 24 Equ (2.73)= Equ (2.76)
69 lilabor labour

69 lilabor labour

69 6lenigineers engineers

69 6ienigineers eéngineers

76 Fig 2.29%9a A01=2 AO1=2.5

76|Fig 2.29%a AO1=2 AO01=2.5

80 13|Rpc Rde

80 13|Rpec Rdc

80 15|Rpc Rdc

80 15|Rpc Rdc

82 2ip/1 p/01

82 Sip/1 p/01

94 22 p/p p/pl

94| 5 from bottom|Vp/p Vp/pl

94| 5 from bottom|vp/p vp/pl

99 12iFig 3.8 Fig 3.7

99 12|/Fig 3.8 Fig 3.7

99 27 3.9 2.29

99/Line 2 from be Fig 3.9 Fig 2.29(a)
102 8 2 20

104 2/Eq.3.12 Eq.3.11
104 2/Eq.3.12 Eg.3.11
105 16 245.75 124.75
105/Eq. 3.20 245.75 124.75
113 6/link 3 link 4
127 Last line Minor mistake in eqgn.
131] 7 from bottom|opposite same
138] Eq. d 8.382 18.382
140 5 95.66 115.419
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147 8langle 50-90 angle 59-90
151 4| angle( +10jangle( +90)
160/Eq. 4.16 Y1l 5 Y Bl j

172 8isealing factor scaling factor

Page 2




