LAB NUMBER 4

THERMAL CONDUCTIVITY

INSTRUCTIONS FOR EXPERIMENTS

ANAND M. SHARAN NOVEMBER 8, 2009

PLEASE NOTE:

1. NO ERROR ANALYSIS IS TO BE CARRIED OUT IN THIS LAB 4.

2.

SAMPLE CALCULATIONS NEEDED ARE FOR ONE SET OF K VALUE --- CELL E 30, IN THE CALCULATION WORKSHEET.

THIS WILL REQUIRE CALCULATIONS IN COLUMN B – B3 TO B25, AND ROW 30

BASICS OF HEAT TRANSFER

The relationship between the heat flux, q (Watt $/m^2$), and temperature, T (x), is given by

$$q = -k A\left(\frac{d}{dx} \operatorname{T}(x)\right)$$

or

$$k = -\frac{q}{A\left(\frac{\partial}{\partial x}T\right)} \tag{1}$$

where k is the thermal conductivity of the material, and A is the area perpendicular to the heat flux , q ... For the sample shown below, on an over all basis, one can write

$$q = -\frac{kA\left(Th - Tc\right)}{L} \tag{1}$$

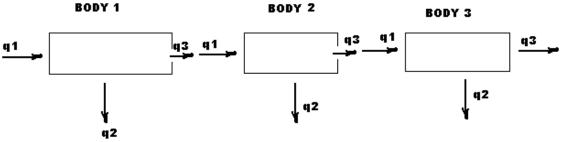

where, A is given by

FIG 1b NOTATION OF q, THE TOTAL THERMAL **ENERGY WHERE q/A IS THE HEAT FLUX**

q3 OF BODY 2 = q1 OF BODY 3;

q3 OF BODY 1 = q1 OF BODY 2;

q2 **CONVENTION FOR HEAT FLOW: RULE 2 RULE 1 q2 IS THE HEAT LOSS OF ANY BODY**

HEAT BALANCE q1 = q2 + q3

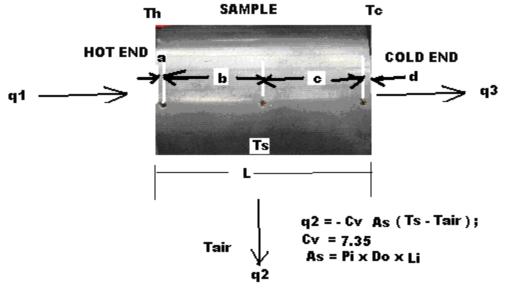


FIG 1

FIG. 2

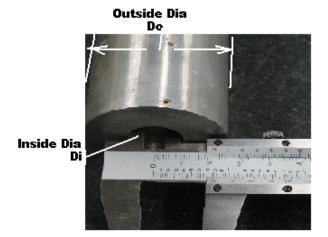
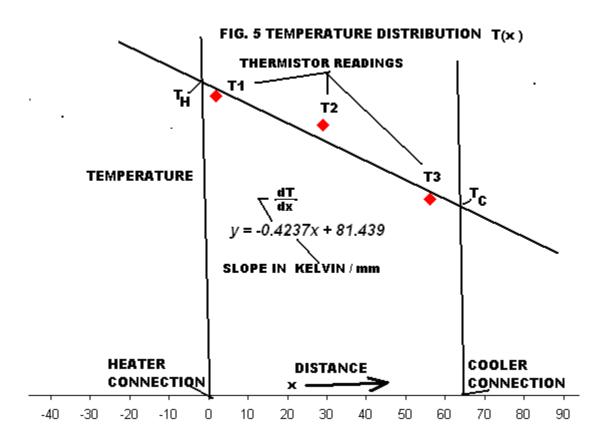
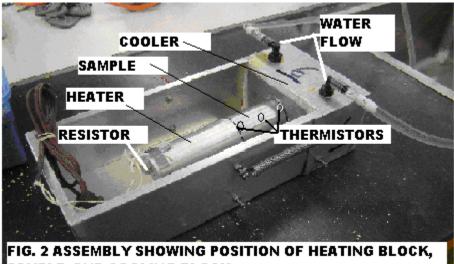



FIG 3



Obtain TH, and TC from the graph above by extrapolation.

EXPERIMENTAL COMPONENTS AND ASSEMBLY

In this experiment, the sample is heated by a Heater Block, cylindrical in shape, using a resistor. The heat flows axially . The sample is cooled by another Cooling Block shown below. The details of each of these units are also shown in the next few figures.

The heating is started by immersing the assembly in an insulating material called vermiculite (see FIG. 6) and when the steady state temperatures are reached then calculations are performed to determine the conductivity of the sample material using Eq. (1)

SAMPLE, AND COOLING BLOCK

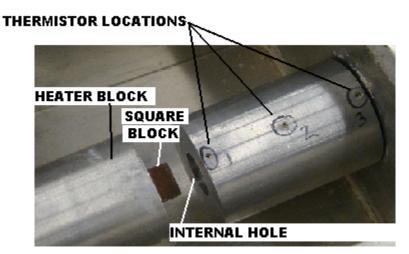


FIG. 3 CONNECTION BETWEEN HEATER AND SAMPLE

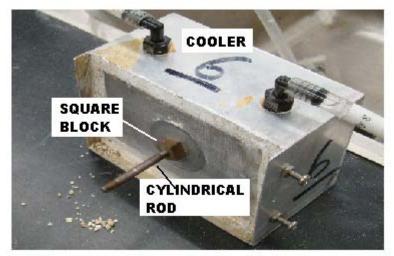
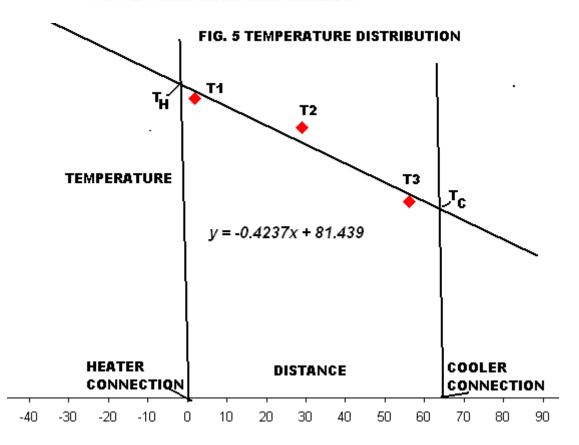



FIG. 4 DETAILS AT THE COOLER END

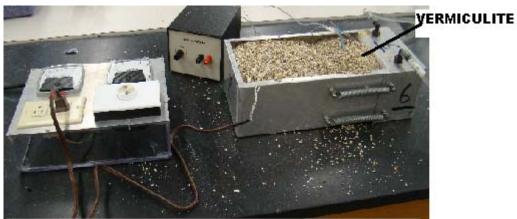
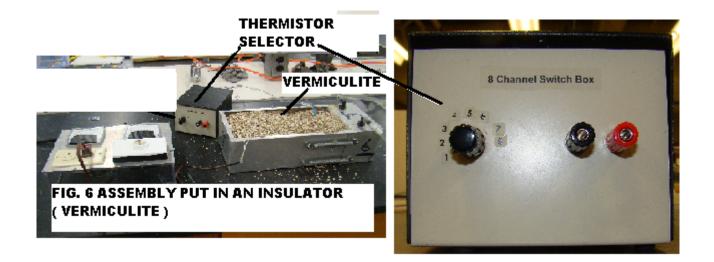
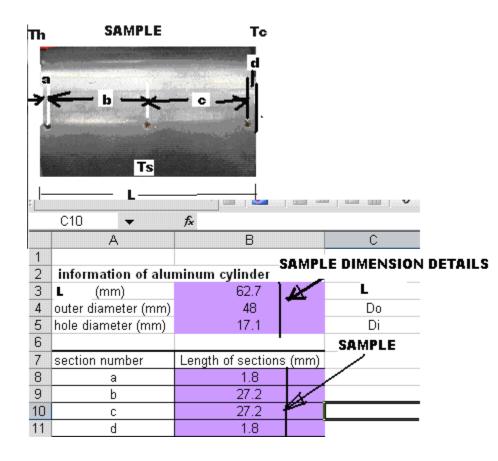



FIG 6 THE ASSEMBLY IMMERSED IN VERMICULITE



NO 1

DATA SHEET

Measure each of the components, followed by appropriate calculations and then insert in the appropriate cells of the software .

UNIT	COMPONENT	FORMULAS
HEATER BLOCK	Do = L =	As = $(\pi \mathbf{x} \mathbf{D} \mathbf{o} \mathbf{x} \mathbf{L}) + \pi \mathbf{x} \mathbf{D} \mathbf{o}^2 / 4$
SAMPLE	Do = Di = a = b = c = d =	$A=\pi x (Do^{2} - Di^{2})/4$ $As1 = \pi x Do x a$ $As2 = \pi x Do x b$ $As3 = \pi x Do x c$ $As4 = \pi x Do x d$
ROD	Radius , Rr =0.00275 Length , Lr=(a+b+c+d)	$Ar = \pi * Rr^{2}$ Lr=(a+b+c+d)
HEATER	VOLTS , V CURRENT, I	V = I =
TEMPERATURES	Room Temperature	T =
HEATER, GRAPH	TH	TH =
COOLING, GRAPH BLOCK	ТС	TC =

NO 2

THERMISTORS CONSTANTS

SEE THE TABLE BELOW ; T is in degrees Kelvin

THERMISTOR	$\ln R_o$ (Ω)	C (K)	THERMISTOR	$\ln R_o$ (Ω)	C (K)
1-1	-2.876	4041	5-1	-3.008	4057
1-2	-2.646	4029	5-2	-2.924	4054
1-3	-2.549	4006	5-3	-2.638	4023
1-4	-2.964	4073	5-4	-2.728	4045
1-5	-2.605	3970	5-5	-2.734	4016
2-1	-2.731	4017	6-1	-2.592	3946
2-2	-2.981	4050	6-2	-2.528	3958
2-3	-2.528	3945	6-3	-2.771	4034
2-4	-2.617	4015	6-4	-2.540	3946
2-5	-2.756	4012	6-5		
3-1	-2.550	3977	7-1	-2.693	4034
3-2	-2.795	4029	7-2	-2.692	4011
3-3	-2.539	3964	7-3	-2.761	4018
3-4	-2.397	3982	7-4	-2.772	4025
3-5	-2.773	4008	7-5		1.000
4-1	-2.661	4018	8-1	-2.769	3996
4-2	-2.551	3962	8-2		7961
4-3	-2.341	3928	8-3	-2.529	3939
4-4	-2.514	3947	8-4	-2.495	3939
4-5	-2.668	4005	8-5		
А	-2.143	3846	F	-2.272	3903
В	-2.225	3818	G	-2.977	4057
С	-2.365	3865	Н	-2.408	3861
D	-2.954	4052	Ι	-2.800	4000
Е	-2.707	3976	J	-2.266	3691

 $\ln = C X 1/T + \ln R_o$

NO 3

NU	3		······································	· • • • • • • •	-0 I Imma	
Locale	C10 👻	fx				
	A	В	С	D	E	F
11	d	1.8				
12						
13	Constants of them	nisters				
14	Channel number	Ln R ₀ (ohm)	С			
15	1	-2.8	4000			
16	2	-2.341	3928			
17	3	-2.408	3861			
18						

THERMISTOR READINGS - STEADY STATE :

NOTE MULTIMETER IS SET ON OHMS

PLEASE SEE THE CONNECTION SETTINGS

1		•	• • • • • • • • • • • • •		0 % -	: 🎫
	G20 🗸 🗸	fx.			_	
	A	В	С	D	E	F
19	Measured data					
20	Time (min)	Hole #1(Kohm)	Hole #2 (Kohm)	Hole #3 (Kohm)		
21	0	11.02	16.2	21.05		
22	10	4.13	6.82	10.62		
23	20	3.24	5.51	9.02		
24	30	2.98	5.13	8.52		
25	40	2.89	4.99	8.34	The empty	areas
26	42	2.86	4.95	8.29	are for you	i to add
27	44	2.84	4.92	8.24	extra data	if it
28	46	2.82	4.89	8.22	happens ir	your
29	48	2.81	4.87	8.19	measurem	ients.
- 30	50	2.8	4.86	8.17	/	
- 31	52	2.78	4.83	8.12		
32	54	2.76	4.79	8.08		
-33	56	2.76	4.78	8.07		
34						
35						
36						

NO 4

1.00	1	I			
37	What is your last three measuremements for each hole in the proceeding form				
38	Time (min)	Hole #1 (Kohm)	Hole #2 (Kohm)	Hole #3 (Kohm)	
39	52	2.78	4.83	8.12	
40	54	2.76	4.79	8.08	
41	56	2.76	4.78	8.07	
42	Average	2.767	4.800	8.090	
K	I				

NO 5 CALCULATIONS SHEET

The formulas for each of the cells are explained on the worksheet below itself.

° 📃					
	E30 v fx =B30/(B20*B25))			
	A	В	С	D	
1	HEATER BLOCK				
2	When R is stable				
З	V (v)	70			
4	I (A)	2.5			
5	Q FROM HEATER (Watts)	175 🔶	B3*B4		
6					
7	Calculation of heat loss in heater bloc	. _H , watt/m²)			
8	Cv	7.35	ASSUME		
9	Room Temperature (K)	300			
10	Extrapolated Temperature (K)	376	Pick up from the graph , this is t	the temperature at the	
11	LH_HEAT LOSS HEATER BLOCK (watt/m ²)	558.6 👞	PER UNIT LENGTH		
12	Calculation of total Heat loss in heater	r block (H⊾, watt)	B8*(B10-B9)		
13	Dia of the Heater Block (m)	0.05025			
14	length of heater block (m)	0.1158	L		
M					

	A	В	C	D
13	Dia of the Heater Block (m)	0.05025		
14	length of heater block (m)	0.1158	L	
15	surface area (m ²)	0.0203	As = (Pi Do L) +((Pi/4)*Do^2	2)
16	H _L (watt), B11*B15 ———	→ 11.32	TOTAL HEAT LOSS, BLOCK	
17	Heat Conducted in the rod, Qr			
18	K (watt/m²), GIVEN	46	This area here is pi*L*D, whic	ch is same as column G10-(
19	radius of rod (m)	0.00275	RADIUS OF THE ROD	/
20	dT/dx,GRADIENT OR SLOPE (K/m)	423.7	This is temperature gradient in	term 🖋 distance, pick
21	Qr, (ABS(B18*3.14*B19^2*B20)	→ 0.463		

	A	B	С	D	E	
22	SAMPLE					
23	Do(m)	0.050				
24	Di(m)	0.020		B8*C30*(Graph	1!H10-	
25	Cross Section Area,(Pi/4)*(Do^2-Di^2)	0.001669024	Graph!G10	<u> </u>		
26						
27		B5-B16-B21				B3I
28	calculation form of heat loss in each s	ection of aluminµ	m cylinder /			
29	Section number #	Heat enters(watt)	şrurface area (m ²)	Heat loss (w)	K (w/mK)	
30	1	163.218 🎙	🕨 0.000481244	0.130874374	230.8055335	
31	2	163.087	0.003802619	1.053686573	230.6204646	
32	3	162.033	0.003802619	1.28287039	229.1304505	
33	4	160.750	0.000481244	0.191005843	227.3163485	
34			(E30+E31+E32+E33)/4			
35	average K (w/mK)	229.4681993	1200-201-202-200/4			
36						
37						
20						

SECTION 2

Assume the following:

NO 1

Heat Generated by the Resistor = V (voltage) x I (Current) = q1 for the Heater Block.

NO 2

Ts of the Heater Block = **TH** (**from the graph**)

No 3 Heat Loss from the Heater Block

 $q2 = \{ (Pi x Do x L) + (Pi x Do^{2/4}) \} x \{Cv x (TH - TAIR) \}$

Heat Conducted Away

 $q3 = V \times I - q2 = q1 (SAMPLE)$

This will be the Heat Entering Part I

SAMPLE HEAT BALANCE

q1 (SAMPLE) - SECTION I

q3 (SAMPLE) – SECTION I = q1 (SAMPLE) – q2 (SECTION I)

q2 (SECTION I) = As x Cv x (Ts - TAIR)

Ts = **Temp of Zone I** = **T1 From the Graph.**

In this way, one can do all the calculations

The equation for K is

$$k = -\frac{q}{A\left(\frac{\partial}{\partial x}T\right)}$$

Where q is q1 for each zone

SOME SELECTED CALCULATION EXAMPLES

SAMPLE CYLINDER

- L := 0.05400000000
- Do := 0.05025000000
- Di := 0.0200000000
- *a* := 0.00305000000
- *b* := 0.0241000000
- c := 0.02410000000
- d := 0.00305000000

 $A = 3.1416*(Do^2 - Di^2)/4;$

A := 0.001669020185

As1 = 3.1416 * Do * a As2 = 3.1416 * Do * b As3 = 3.1416 * Do * c As4 = 3.1416 * Do * d ;

As1 := 0.0004814883442As2 := 0.003804547245As3 := 0.003804547245As4 := 0.0004814883442

ROD

<pre>Rr =0.00275 Lr =(a+b+c+d); Ar =3.1416 * Rr ^2;</pre>	
	Rr := 0.00275
	Lr := 0.05430000000
	<i>Ar</i> := 0.00002375829445
Ε ΔΩΜ ΤΗΕ Δ ΔΑΒΗ	<i>SLOPE</i> := 423.7

FROM THE GRAPH

HEATING BLOCK

Do =50.25/1000; L =115.8/1000; As =3.1416 * Do * L)+ 3.1416* Do^2 / 4 ; Do := 0.05025000000 L := 0.1158000000 As := 0.02026395003

GRAPH WORKSHEET

CELL F10 CALCULATIONS

THERMISTOR EQUATION FOR TEMPERATURE

 $\ln(R) = C/T + \ln(Ro);$

or

 $(\ln(R) - \ln(Ro)) = C/T;$

or

T = C/(ln(R) - ln(Ro));

FOR NUMBER 1 HOLE

Ln R0 (ohm) = -2.8

C = 4000

Let

Q1=ln(Ro) =-2.8;

Q2=ln(R) =ln(2.767)

GIVEN

C = 4000.; Q1 =-2.8; Q2 =ln(2.767*1000);

C := 4000.

Q1 := -2.8

Q2 := 7.925518980

T (in degrees K) = C/(Q2-Q1);

T := 372.9423264

T (in Celsius) =T-273;

 $T_{celsius} := 99.9423264$

CALCULATION SHEET

HEATER BLOCK

CALCULATION OF CELL B11

V =70 ; I1 =2.5; QH = V*I1;

V := 70II := 2.5QH := 175.0