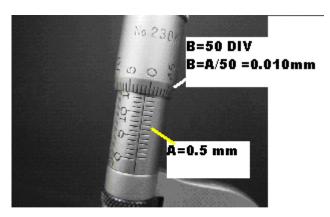
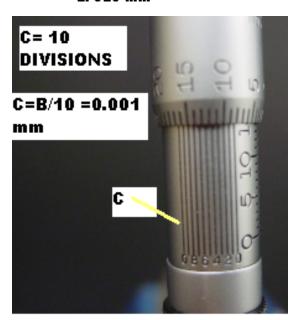

LAB NUMBER 1

VERNIERS, MICROMETERS AND UNCERTAINITIES


INSTRUCTIONS FOR EXPERIMENTS

ANAND M. SHARAN SEPT 7, 2010


VERNIER CALIPER

MICROMETER READINGS

READING = 2.0 + 1XA +42 X B + 9 X C = 2.0 + 0.5 + 0.42 +0.009 = 2. 929 mm

CALCULATING UNCERTAINTIES IN EXPERIMENTS

The algebra is as follows:

A Ouality Measured

 $\mathbf{U}_{_{\mathbf{A}}}$ Uncertainity Per Unit of A

Suppose there are several measurements - A, B, C, D.....then

Addition

1)
$$A \angle U_A \pm B \angle U_B$$

= $(A + B) \angle (U_A + U_B)$

SUBTRACTION

2)
$$A \angle U_A - B \angle U_B$$
$$= (A - B) \angle (U_A + U_B)$$

MULTIPLICATION

3)
$$\frac{(A \angle U_A) \times (B \angle U_B)}{= (AB) \angle (U_A + U_B)}$$

DIVISION

4)
$$\frac{A \angle U_A}{B \angle U_B} = \left(\frac{A}{B}\right) \angle \left(U_A + U_B\right)$$

5) A constant has zero uncertainty. For example, the acceleration due to gravity,

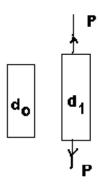
$$g = 9.81 \, m \, / \, s^2$$

$$g \angle (Ug = 0)$$

HOW TO EXPRESS UNCERTAINTY

Let us look at the following instruments for measurements.

Lab #1 Uncertainties


Metrology: The science of measurement.

Length Measurements:

	Range	Resolution Smallest Main Scale Graduation	Repeatability Uncertainty
Rule	0-300 mm	1 mm	± 1 mm
Vernier Caliper	0-150 mm	0.05 mm	± 0.05 mm
Micrometer	0-25 mm	0.002 mm	$\pm~0.002~\mathrm{mm}$

Examples:

length of 10 mm (ruler) = $10 \text{ mm} \pm 1 \text{ mm} \text{ or } 10 \text{ mm} \pm 10\%$

EXAMPLE

Let us look at the application of the above in the measurement of Stress-Strain curve. The readings are as follows:

d_0	d_1	Load	Instrument	Instrument
1.2	1.1	4000kg	Micrometer Resolution (0.002)	Balance Resolution (1kg)

strain =
$$\frac{d - d_o}{d_o} = \frac{(1.1) - (1.2)}{1.2} = \frac{-0.1}{1.2}$$

$$\frac{\left\{1.1\angle\left(\frac{0.002}{1.1}\right)\right\} - 1.2\angle\left(\frac{0.002}{1.2}\right)}{1.2\angle\left(\frac{0.002}{1.2}\right)}$$

$$\frac{\left(1.1\angle 0.0001818\right) - 1.2\angle 0.001666}{1.2\angle \left(0.001666\right)}$$

$$=0.08333\angle(0.005138)$$

stress =
$$\frac{force}{Area} = \frac{400 \angle \left(\frac{1}{400}\right) \times 9.81 \angle 0}{\pi \frac{d_o^2}{4} = \frac{3.1416}{4} \times (1.2^2 L(2*0.00166))}$$

$$= \frac{3924 \angle (0.0025 + 0)}{0.7854 \times \{(1.2 \angle 0.0016)(1.2 \angle 0.0016)\}}$$

$$=4996\angle(0.0025+0+0.0016+0.0016)$$

$$=4996 \angle 0.0057$$
 $\frac{N}{m^2}$

Modulus of Elasticity =
$$\frac{Stress}{Strain} = \frac{4996 \angle 0.0057}{0.0833 \angle 0.005738}$$

```
= (4996/0.08333) \angle (0.0057 + 0.005138)
```

= 59954.39818 **८** 0.010838

It can also be expressed as

```
= 59954.39818 \pm [ (59954.39818) x( 0.010838) ]
```

- **=** 59954.39818 ± [**649.7857675**]
- = 60604.18395 Maximum ; 59304.61241 Minimum