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CHAPTER 1

1.1 BACKGROUND

Application of Robots
(a)  Automation - {Repeated jobs, Repetitive jobs}
(b)  Hazardous or Inaccessible Environment
Hazardous - Nuclear Reactors
- Furnaces operations
- Mines
Inaccessible Environment - Deep sea

- Outer space

What is Robot?

If a mechanical de\;ice can be programmed to perform a wide variety of
works then it is a robot.

The mechanical devices which perform to produce one class of task are
called machines. In general, robotics involves more sophisticated knowledge of

kinematics, dynamics and controls than machines.

It is quite difficult to very precisely define these terms.Mechanical
Engineers are mainly involved in the statics- and dynamic analysis of Robots.
Control Theory provides tools for designing and evaluating algorithms to REALIZE OR

ACHIEVE DESIRED MOTIONS OR FORCES.
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1.2 SOME TERMINOLOGIES IN MECHANICS AND CONTROL

FIGURE 1.4 The Cincinnati Milacron 776 manipulator has six rotational
joints and is popular in spot welding applications. Courtesy of Cincinnati
Milacron.

(a) POSITION AND ORIENTATION

FIGURE 1.5 Coordinate systems or “frames” are attached to the



In the use of robots, we are constantly concerned about the location and orientation
of objects in three dimensional space.

This requires a systematic analysis where different coordinate systems, one each,
on every link, are set up. There is a separate coordinate system attached to the ground
(stationary) and is called the REFERENCE OR GLOBAL COORDINATE SYSTEM OR
FRAME. Any coordinate system can be described either with reference to another
moving coordinate system or the REFERENCE COORDINATE SYSTEM.

The description of any coordinate system requires the knowledge of
(a) the position vector of its origin
(b)  the orientations (direction cosines) of each of its x, y, and z axes with respect to
the FRAME OR THE REFERENCE SYSTEM.

(a) POSITION VECTOR OF ITS ORIGIN

It is a vector, in three dimensions joining the origin of the FRAME to the
origin of the coordinate system. This vector will have three components along the
REFERENCE AXES.
(b) ORIENTATION

The orientation of any of the axes is represented by its direction cosine
which is nothing but the cosines of the angle between this axis and the reference axis.
The angle has to be measured in a plane containing this axis and the reference axis - it
is an unique plane. Suppose a,, 6,, and v, are the angles the O,x, axis makes

respectively with the X, Y, and Z axes, then we can represent the x, - O, - y, - z, system
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by a (4x4) matrix as

X

1 Yi zZ, Roo
NN NN

Cosa, Cosa, CosA; (R, o),

cosB, CosB, CosB; (Ryo), (L
:x[ T ] -
Cosy, Cosy, Cosy, (Ro,o)z

o 0 0 1

The first three columns show the direction cosines of each of the axass of the O,
system. The fourth column contains the three components of the position vector of the
origin, O,. The FOURTH ROW contains three zeros and a one and the reason for it will
be made clear later on.

If we want to grip certain objects in the Cartesian space using the manipulator then
we have to have our end effector oriented in the space in a certain way. To do this, all
the connecting links have to have certain angular relationships with each other. If we
attach one frame to each of these links then we can (a) either write relationships between
each of these frames with the Global Frame or (b) reiaﬁonship between the consecutive
frames.

In Chapter 2, it will be shown that gi?r:n the relationships in either forms (a) and

(b), one can obtain the other. In other words, it is sufficient to provide information in



one of the two forms.

FORWARD KINEMATICS OF MANTPULATORS

Kinematics is a science of motion .where parameters (velocity, displacement,
acceleration etc.) are determined without taking into consideration, the forces. All these
parameters are time dependent.

The Links are considered rigid i.e., they are not stretchable or bendable. The
connections between the links are called JOINTS and there is only one degree of freedom
at each joint in this course.

These joints are usually instrumented with position sensors which enable us to
know the relative position of each link at a given instant of time. If we obtain the
continuous time histories of the relative positions, and if we use the data set where the
each of the link lengths are given, then we can calculate the KINEMATICS
PARAMETERS at any instant of time.

In this course we would study two types of joints:

(a)  Revolute Joints.

(o)  Sliding Joints.

END EFFECTOR - At the free end of the chain of links which make up the manipulator
is the END EFFECTOR. Degpending on the intended application of the robot, the end
effector may be 2 gripper, welding torch, electromagnet or any other device.

We generally describe the position of the manipulator by giving the description of
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the tool frame which is attached to the gripper relative to the base frame which is

attached to the nommoving base of the manipulator.

l

X

FIGURE 1.8 Xinsmatic aquasions deocribs the tool frama relazive 10 the
baze frame as3 a fuaction of the joiat variaples.

In FORWARD KINEMATICS we compute the position and orientation of the end
effector given the joint angles. In other words, we are given the JOINT SPACE DATA
as well as Link Lengths etc. and then we compute the orientation and location (x,y,z)
of the end effector cocrdinate system. Here the calculations are done with respect to the

base frame. It is the opticn (a) on page 7.

VERSE KINEMATY F MANIPUTLATOR
In the INVERSE KINEMATICS problems we have: Given the position and
orientaticn of the end effector, calculate ALL POSSIBLE sets of joint angles.

The Inverse solutions arza:
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2)
3)

4)

represents the JO

Difficult to obtain (Equations are non-linear).

Multple solutions exist.
Closed form solutions may not be possible to obtain.

Sometimes the solutions may not exist.

VELOCITIES, STATIC FORCES, SINGULARITIES

The vector containing the joint angles

T SPACE. The vector involving the coordinates of the peint or

points represents the Cartesian Space.

in Egquation
C)
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The vector {V} is related to the vector {6} by a matrix [J].
If {V} represents the various components of the tip velocity in the Cartesian space and
{é}, the joint velocities of the manipulator ‘then the matrix [J] is called a JACOBIAN.
If this matrix {J] is SINGULAR i.e., if its determinant for a given 6, = 0 then [J]! will
not exist. This particular combination of 6, = 0 defines the singularity of the
manipulator. In these configurations, infinite torques are required to impart given tip

velocities. Therefore in planning tip paths, singular configurations are avoided.

DYMNAMI

It is a field of study wherz forces which cause the motion ars also included in the

analysis. To give certain type of motion, say a constant speed or Velocity in the
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Cartesian space would require a complex or intricate time history of motor torques to
each of the arms. These torques are calculated using either Lagrange’s Equations of

Motion or Newton’s Equations of Motion. These are actually called Newton-Euler

Dynamic Equations.

FIGURE 1.10 In order to move the end-effactor through space from point A
ta point B we must compute a trajectory for each joint to follow.

For the end effector to move along ce;‘tain path with certain velocity etc. requires,
at every instant of time, a set of {#} vectors i.e., a synchronized joint angle variations or
coordinated joint angle variations. If this dees not take place then the end effector will
not traverse along its trajectory.

The path is defined by a series of points along the trajectory which are very close
to each other. For each point, there exists at least one {4} vector. These points ars

calied VIA POINTS and the SMOOTH FUNCTION passing through these points is
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called a SPLINE FUNCTION.

A ATOR NSOR
The parameters or the variables involved in the design are:
1) Size of links.
2) Number of joints.
3) Load capability.
4) Maximum tip speed.
5) Workspace size.
6) Deflection of links.
7 Choice and location of actuators.
8) Transmission system.

9) Position and Force sensors.

LINEAR POSITION CONTROL

Vast majority of manipulators are driven by actuators which supply a force or a

torque to cause motion of links.

In the POSITION CONTROL SYSTEM, the errors in the trajectory chosen are
minimized. The system computes the torques based on the LINEARIZATION of the
Non-Linear Dynamic Equations. Such control methods are used in industries these days.

NON-LINEAR CONTROL
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Some attempts have been made to use the Non-Linear Dynamic Control

Algorithms in the CONTROLLERS. These algorithms are superior to the linear ones.

FORCE CONTROL
In certain applications, the forces of application must be very closely controlled.
For example, if a manipulator is moving in free space then the POSITION CONTROL
is important but when it touches a rigid object then a FORCE CONTROL may become
important.
In HYBRID CONTROLS, a position control is applied in certain directions and

force control

FIGURE 1.12 In order to cause the manipulator to foilow the desired
trajectory. a position ccntrol system must be impiemented. Such a system
uses feedback from joint sensors to keep the manipulator on course.
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FIGURE 1.13 In order for a manipulator to slide acroes & surface whiie
applying a constant {orce. a hybrid position-force control system must be used.

In some others.

1y
2)
3)

4)

NOTATIONS
A, {A} VECTOR, Also (2) Co-ordinate System {A}
[B] matrix
[B]™ Transpose of matrix [B]

[B]' Inverse of matrix [B)
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CHAPTER 2

In the manipulations of Robotic manipulators, control is
applied on (a) forces and torques, etc. or (b) kinematic parameters
such as displacement, velocity, acceleration, etc. of the end
effector or the tool. Naturally, all of these have to be defined
with respect to some inertial coordinate system - UNIVERSE

COORDINATE SYSTEM which is a Cartesian frame.

2.2 DESCRIPTIONS : ITl RIENTAT AND FRAME

Once a coordinate system is established, we can locate any
point in the space with a 3x1 POSITION VECTOR. In this course, the
vector will be written with leading superscript which identifies

the frame. For example a vector P or {P} will be expressed as

*P or * {P}

In terms of the components we can write

A_E' A{P}" py




FIGURE 2.1 Vector relative to frame example.

ORIENTATION

The orientations of any of the axes of the system B are shown in

the [R] matrices.

[R] = |%5.94 9594 239, (2.3)

a[R] - 2.4

Please note that all the vectors are unit vectors. Therefore, their
magnitudes are equal to 1. The [R] has its elements, the direction

cosines. It is an ORTHONORMAL MATRIX and the following
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relationships apply

3R] = XRI" - LR]IT Q.7

fig

FIGURE 2.2 Locating an object in position and orientation.

DESCRIPTION OF A FRAME

A frame is described with respect to a REFERENCE FRAME by its [R]

matrix and the position vector of its origin.

AlT] - [ AR]: © P, orioml



Xy

FIGURE 2.3 Example of several frames.

Naturally, “p A ORIGIN will have 3 components along the each of

the axes of the reference frame U.

2.3 MAPPINGS: CHANGING DESCRIPTIONSF FRAME TO FRAME

A given point will have different position vector in different
frames. In Fig 2.4, frames {A} and {B} have same orientation i.e.,
the corresponding axes are parallel. 1In this case {B} is displaced
from {A} by a vector *P , ciem-

fig 2.4

~

X,

~

FIGURE 2.4 Translational mapping.



The unit vectors R, 95, and 2, will be equal in magnitude.

Therefore one can add vectors in system {A} and {B}.

A.I_).- BE+ AP

—B ORIG

AP} - B{P} + *{Py onic}

2.9

Here we have mapped ®{P} into *{P}.

fig

{B} {a}

FIGURE 2.5 Rotating the description of a vector.

Here we say that A{PB gy} defines this mapping. All the
information necessary to perform the change in description is

contained in this vector. A TRANSLATION VECTOR had sufficient



information. On the other hand, as we will see next, when the

ORIENTATION of two frames are different then we would need an
ADDITIONAL ROTATIONAL MATRIX to completely define the mapping.
MAPPINGS INVOLVING ROTATED FRAMES

Fig 2.5 shows two frames {A} and {B} where the origins of the two
systems coincide and there does exist an axis about which the
frames {A} can be rotated to make it coincident with the frame {B}.
It is also possible to rotate the frame {A} in three successive
rotations about %,, ¢,, and 2, respectively to make it coincident
with {B}. We will study these details later on. As shown in fig
2.5, we can write as columns, the direction cosines of &;, ¢;, and

2, to form a rotation matrix [R] as:

Xg Ys Aza

s[RI - (2.11)

- | "] - ARI" - [RI"

Suppose we are given ®{P} and we want to know *{P}. In compact

notation, the solution is



A{P} - 3R] *{P}

where

"‘Px - BiA- Bp
APy - B?A. BP
APz - BZA- Bp

(2.13)

2.12)

Please note that for this mapping, the origins of the two

ZA 28

systems were coincident. We should always remember the inverse
relationship
A Brp1- B
s[RI - RRI" - XRI" 2.10)
EXAMPLE
fig
Ve T’k
XB
[
20
® ’XA



MAPPIN

s[R] -

AlR] -

AR]T -

| Cos30
-Cos300

_Cos270

[ Cos330

Cos240

_Cos270

[0.866

0.5

INVOLVIN

Cos120

Cos30

Cos270

Cos60

Cos330

Cos270

ENERAL FRAME

Cos90
Cos90

Cos0 |

Cos90

Cos90

Cos0 )

FIGURE 2.7 General transform of a vector.
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In fig 2.7, the frame {B} has different orientation as well as the
location of its origin is different from that of {(A}. We are given

the vector ®{P} and we would like to know *{P}. The formula is

A{P} - &IT] *{P}

(2.18)
4x1 4x4 4x1
[R] ' APBORIG]N [ ]
3%3 | 31| | P
- |__ L Cy-=t (2.18a)
[0] | 1! ]
| 1%3 | 1x1
fig
Zs
Za P
4 A
R4
N
Xs
';
A



Suppose for the figure shown we have the following values

-
r

(0866 -05 0 1

Rl - | 05 0866 O, *{P, ouent - 131

0 0 1] 4
3x3 3x1
T
2
P} - 3
e 1 -~
3x3 3x1
(0866 -05 0 | 1]
05 086 0 | 3
a1 =1 0 0 1 I 4
|0 0 0 | 1]
1x3 1x1

10



A%[T] is made out of 4 sub matrices:
1) The [R] rotation matrix.

2) {Py iy} Vvector.

3) [0] 1 x 3 null matrix.

4) (1] 1 x 1 unit matrix.

Now we can multiply the submatrix in Eq. (2.18 a) and obtain

~

(0.866

Vv

AP} = A[R] (P} + AP, cuond - 1 5-23

7.00

The first term(vector {“X1}) on the right hand side is nothing but
projections of ®{P} along (R, - 9, - 2,) systen. Therefore the
matrix %[R] projects a vector in {B} parallel to the coordinate
axes of {A}.

The second term A{P } is already expressed in frame {A}.

B ORIGIN
Now, these two vectors can be added because they are expressed in

the same frame.

CONCLUSION

If the vector is expressed in a frame which is (a) oriented
differently, and (b) its origin also does not coincide with the

reference frame then one has to do two things:
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1) Project the vector parallel to the reference axes by pre-
multiplying it with [R] matrix.
2) Add the vector joining the two origins but these one also

expressed in the reference frame.

(2.19)

If we expand the lower submatrices, we would get

(11 = [0] *{P} + [1](1]
1x3 3x1  1x1 1x1
- [0] + [1]
1x1 1x1
1-1

2.4 OPERATORS: TRANSLATION TATIONS, TRANSFORMATION

The same mathematical forms which were used for mapping can
also be used for translation of points, or rotation of vectors or

both.

12



Xa

FIGURE 2.9 Translation operator.

A translation moves a point in space a finite distance along a
given vector direction. 1In the fig 2.9, we would like to move a
point P, along the direction of the vector A{Q}. Since there is
going to be only translation and no rotation i.e., @ = 0°, we can

write the transformation matrix D as

(1 0 o0 | Q]

o 1 0 | q
De=10 0 1 o Q
o 0 0o | 1]

13



where the position vector of Q is written in the fourth column.
The rotation matrix [R] is a unit matrix. The final position

vector {P,} is obtained as

A{Pz} = [DQ] A{P1}
4xX1 4x4 4x1

(2.25)

ROTATIONAL OPERATORS

A rotation matrix [R] will rotate a vector by certain angle 8
about certain axis in the three dimensional space. While operating

on a vector, it pre-multiplies it.

AP} - [RO)] AP} 2.27)

when 6 = 0°, [R] becomes a unit matrix with 1 along its diagonal

and 0 elsewhere. [R] rotated about z axis is written as

(Cosd  -Sind 0

[R,®] - | Sind Cos§ 0 (2.29)

14



The z axis is represented by a direction

b o 1

We can have a general axis in space called ‘k’ axis and rotation

about this axis whose directions are given by

The corresponding rotation matrix is written as equation (2.80)

k kv0+cd Kk kvl —k,s0 k k,v8+k,s0
Rp(8) = |k kw0 + k80 kb vd+cf k kvd-k,s6]. (2.80)
k k,v0 —k, s6 k,k,v+k.s8 k k,v0+ch

Where cf = cos 6, s0 = sinf, v0 = 1 - cosd, and 4K = [k, k, k,]T.

vz

15



The expressions for (R, ( 6 )] and [R, ( 8 )] are

R(@®] =|0 Cosé -Sin

0 Sinf Cosf ]

[(Cos§ 0 Sind

R®I-| 0 1 o0

_—SinO 0 Cos0_‘

EXAMPLE s
A
0 ) P
GIVEN: A{P} - {2} 30
0]

Find A{P,} which is obtained by rotating *{P,} about 2, axis by 30°.

16
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SOLUTION:
AR} - [R,(30] A{P}

(Cos30  -Sin30 0| [0

= | Sin30 Cos30 0 2

~1.000
AR} - | 1732

0.000

TRANSFORMATI PERATOR

The combined operations of rotation and a translation are done
using transformation operator [T] which has [R] and {Q} which are

rotational and translational components as its sub-matrices.

Rl | {Q}

01 | 1

AN IMPORTANT THEQOREM

The transform [T] which rotates by [R] and translates by {Q}

17



is the same as the transform which describes a rotated frame by [R]

and translated by {Q}. N
; e
fig
A N
Ya 4 e
b\ 71307
1
!
6 |
1
i
\& :
o A
Xa
[R,(30°) | oa
| ab
7] - |0
oo0o0o | 1

2.8 MORE ON REPRESENTATION OF ORIENTATION

The rotation matrices are special in that all columns are

mutually orthogonal which means their dot products with other are
equal to zero. Furthermore, the determinant is always equal to +1.
They are called proper orthonormal matrices. Proper orthonormal

matrices have determinant = +1, and the non proper have equal to

18



Next question is, what or how many independent parameters are
there in 3x3 rotation matrices which has 9 elements. The answer
comes from Cayley’s formula for orthonormal matrices which states
that for every rotation matrix [R] there exists a skew-symmetric
matrix, [S], such that

[R] = [(I3] - [S)17" [[I3) + [S]) (2.56)

Where [I;] is an identity matrix and [S]) is given by

0 -S, s,
[S1-1S, 0 -S (2.57)
s, S, 0]

(Skew Symmetric)

One can see that ([S] in Equation (2.57) above has only three
independent parameters. If we see the Equation (2.56), we see that
[I;]) being an identity matrix is completely known; therefore, the
right hand side contains only three unknowns or three independent
parameters. It shows that the left hand side of this equation must
also contain only three independent parameters.

The other way would be to express [R] as three columns as

(Rl =[x ¥ 2]

where each of &, ¢, and 2 are unit vectors. Then we should also

19



have the following equations of constraints:

=] =1
lg] =1
2] =1 (2.59)
g .9=0
£ .2=0
g .2=0

To obtain the 9 elements of [R], we should have 9 equations which
are subject to 6 equations of constraints. Therefore, there are
only 3 independent parameters.

One should also remember that the products of rotation

matrices are not commutative i.e.,

AR] ER] = B[R] A[R]

20



EXAMPLE:

0.866  -0.5
GIVEN 4[R] - | 0.5  0.866
00 00
(10 00 00|
BIR] - [0.0 0.866 -0.5
00 05 0866
087 -043 025 |
ARI B[R] - |05 075 -0.43
(00 05 087
087 -05 0.0 |
}R] 5[R] - |0.43 075 -0.50
025 043 0.87 |

0.0

0.0

1.0

(2.62)

In view of the fact that one can represent [R] by three independent

parameters, there are representations which require only three

independent parameters and are discussed below:

1 X-Y-Z FIXED ANGLES

Here, we are given the Reference Frame {A} and we have to

specify the {B}.

21



FIGURE 2.17 X-Y-Z fixed angles. Rotations are performed in the order
Rx(v), Ry(8), Rz{a).

We start with a frame coincident with {A} and rotate this
coincident but separate frame about various axes of {A}.
1) Rotate {B} about £, by an angle y.
2) Then rotate it about 9, by an angle B.
3) Finally, rotate it about 2, by an angle «a.

It should be noted here that all the rotations were performed
about the fixed or the Reference Axis. Representing the final

matrix as

s[R,(v.8,0]

22



the relationship between the various individual and the final

matrix is written as

3[R, ,(7,8,0] = R (IR B]IR, ()]

In the equation above on the right hand side, the matrices have
been pre-multiplied i.e., the rotation about the Y axis was
performed after the X axis; so the rotation matrix corresponding to
the Y axis rotations are pre-multiplied. It is an IMPORTANT RULE.

Now we are in a position to write the complete matrices which are

ca -sa O g 0 s 1 0 0

Q[Rm('y,ﬁ,a)] - |sa ca O 0 1 0 0 ¢y -sy

23



cacfl casfsy-sacy casBcy+sasy

Q[Rm('y,ﬁ,a) - | sacf sasPBsy+cacy sasfcy-casy (2.64)
-sf cfsy cfcy
Iy Tp Ipa
=TIy Ip Iy (2.65)
r31 I.32 r33

If we want to determine o, £, and y from the matrices given in
equation (2.65) then we can use the following formulas in the GIVEN

SEQUENCE:

B = Atan2(—r31, rfl + r;l )
o - Atan2(r, /cB, 1, /cB) (2.66)
v = Atan2(r,,/cB, r,,/c3)

where Atan2(y,x) = tan”(y/x). Here signs of both x and y are used.

It is 4 quadrant arc tangent function.
Z-Y - X EULER ANGLES

This involves rotations about {B} of the system B as follows:
1) Start with a frame {B} coincident with {A}, and rotate about

2, by an angle as shown in fig 2.18.

24
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X3

FIGURE 2.18 2Z-Y-X Euler angles.

2) Then rotate about ¢, by an angle B.
3) Then rotate about £, by an angle y.

The final orientation matrix in this case will be

s[R,] = [R(@] [RB)] [R ()]
1 2 3

ca -sa 0 ¢ 0 sB 1 0 O
s[Ry] - |sa ca 0 0 1 0f [0 cy -sy ©(2.70)
0 0 1 -sf 0 cB 0 sy cy

cacf casfsy-sacy casfcy+sasy
sacfl sasfsy+cacy sasfBcy-casy
-sf3 cfsy chcy

(2.71)

Z-Y -ZEULER ANGLES

In this case, the final expression is

25



cacfcy-sasy -cacfsy-sacy casf
s[R,,] = [sacBey+casy -sacBsy+cacy sasf
V -sBcy sBsy cB

2.72)

The formulas for extracting a, £, and y from the matrix on the

right hand side of equation (2.72) are

B = Atan2((rs5? + r3,?) "2, ry)

a Atan2(ry/sf , r,;/sh) (2.74)

vy = Atan2(r,,/sf , -r;,/sB)

EQUIVALENT ANGLE AXIS

Instead of three successive rotations in these three cases, it
is also possible to rotate about an axis in space, only once to

reach to the final orientation.

Eq(2.80)

Kk v0+ch Kk kb —k,s0 kk,v0+k,s
Rp(6) = | kok b+ k.0 kykd+cd kh,vb—k.s8).  (280)
kokub—k,s0 kk,vb+kys0 k.kv8+ch

Where cf = cos8, s6 = sin 6, v8 = 1 —cos 6, and 4K = [k, k, k.]T.

where cf = Cos 6, sf = Sin §, v = 1 - Cos @ and *R = [K K, K,1'.
If the matrix [R] is given and one wants to find out @ and K, then

one has to use the formulas

26



0 - ACos[r” in T T 1] 2.81)

2
Iy — I
~ 1
- |r,-r
5img | T ™ (2.82)
Iy T

In Equation (2.81), 6 should lie between 0 and 180° which is

obvious from the Fig 2.19

fig

FIGURE 2.19 Equivalent angle-axis representation.

It would amount to a maximum of one complete rotation about the K

axis.

TRANSFORMATION OF FREE VECTORS

So far we have discussed only the transformation of position

vectors. However, there are other kinds of vectors such as

27



velocity, force etc. These are transformed differently using only
the rotation matrices.
1) Two vectors are said to be equal if they have (a) same
dimensions, (b) same magnitude, and (c) same direction.
2) Two vectors are equivalent in certain capacity if each
produces the very same effect in this capacity.
3) Vectors which are not equal may produce equivalent effects.
4) A line vector is one which has dependence on line of action
besides having magnitude and direction. Force vector is an example.
5) A free vector is one which may be positioned anywhere in space
without loss or change of meaning provided that magnitude and
direction are preserved.

An example of this is a Moment Vector. Suppose we have a
moment vector in frame B denoted by B{N}. This vector in frame A

will be

A{N} - a[R] B{N} (2.93)

Similar relationships can be written about the velocity vector also

AV} = AIR] B{V} (2.94)
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CHAPTER 2

WORKED OUT PROBLEMS

2.1 [15] A vector AP is rotated about Z4 by #( 30 ) degrees and is subsequently rotated
about X, by ¢ ( 20) degrees. Give the rotation matrix which accomplishes these rotations
in the given order.
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2.2 [15] A vector “P is rotated about Yy by 30 degrees and is subsequently rotated about
Xa by 45 degrees. Give the rotation matrix which accomplishes these rotations in the
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2.3 [16] A frame {B/ is located as follows: initially coincident with a frame [A), we
rotate {5/ about Zz by 6 ( 20 ) degrees and then we rotate the resulting frame about X by
@ (25 ) degrees. Give the rotation matrix which will change the description of vectors

from 2P to #P. e
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2.4 [16] A frame /B) is located as follows: initially coincident with a frame {A), we
rotate {B/ about Zp by 30 degrees and then we rotate the resulting frame about Xp by 45
degrees. Give the rotation matrix which will change the description of vectors from ?P
to*P.
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2.12 [14] A velocity vector is given by
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2.13 [21) The following frame definitions are given as known. Draw a frame dis-
gram (like that of Fig. 2.15) which qualitatively shows their arrangement.
Solve for ET.

[0.866 —0.500 0.000 11.0 ]
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CHAPTER 3
MANIPULATOR KINEMATICS
3.1 INTRODUCTION

In this chapter, we will study the location and orientation of
the end effectbr relative to the base. There are no motions
involved in this chapter. This will be achieved by first defining
a stationary frame at the base and a moving frame attached to each
of the links. By knowing the displacement of the origins of each
of the moving frames with respect to each other and also the
orientations of the axes, it will be possible to calculate the
position and the orientation of the axes at the end effector with

respect to the base coordinate system.

2 LI
fig
\/
Revolute Prismatic
g In
Cylindrical Planar
Screw Spherical

.

FIGURE 3.1 The six possible lower pair joints.



The manipulator may be thought of ag a series of 1links
connected to each other through the joints which are either
revolute or sliding, in this course. 1In other words, these joints
have only single degree of freedom.

A typical manipulator has six degrees of freedom. In the
field of Robotics, the transformation matrices between two
coordinate systems are written in accordance with the work of
Denevit and Hartenberg. These matrices are also 4 x 4 but they
require only 4 independent parameters, instead of 6 as seen in the
last chapter. 1In this convention, the coordinate system i-1 is
fixed on the link i-1 such that 2;.,, axis points in the direction of
the rotation vector, if it is a rotating or pinned connection, or
along the sliding direction, in the case of the prismatic joint.
The x;, axis is located or aligned along the link length. By fixing
these two axes, one automatically fixes the Y;., axis.

In this convention, there are two screw axes involved. At
first one rotates about X;., axis such that 2;., axis coincides with
the z; axis and this rotational angle is called a;. Next, the second
rotation is given about this 2;., axis which is now coincident with
the z;, axis until X;.4 axis coincides with the X; axis. 1In the first
rotation i.e., when screw rotates by a degrees, it also advances or
translates'by a; meters. Similarly, in the second rotation, the
translation involved is d; meters and the rotation of the z, , axis
is by 6, degrees. This is clearly shown in fig 3.5. In actual
robotic manipulators the design is such that only 6, is a variable

and the other parameters are fixed for a given manipulator. It

2



Axis i - ]

-

FIGURE 3.5 Link frames are attach

ed so that frame {i} is attached
rigidly to link i.,



will be the convention in this course to use
1) a, = a = 0.0
2) a =a = 0.0
3) The origin or the coordinate system will be located at the
beginning of the link.
4) If the joint 1 is a revolute then the 2zero position is
selected at Q degrees from the base coordinate system.
The Denevit-Hartenberg Transformation matrices can be written

as a product of four individual matrices and the expression will be

LT = Ry )] Dy, )] R6)] [D,(d)]
=[Screw,(a_,,;_)][Screw,(d,,6,)]

6. -s6. 0 a,

- sbcer,, clco , -so, -sq_d,

-
1

sOsa;, clse, ca, cay_,d,
0 0 0 1 J

THR IN

The D-H parameters for this manipulator are given in fig 3.8.
It is a good example where one can verify our concepts from planar
kinematics. Suppose we use a numerical value for 6, = 30°, 6, = 40°
93=30°andL1=L2=10cm. If L; = 5 cm

then



FIGURE 3.7 Link frame assignments.

i -y a - d, 6;
1 0 0 0 6,
2 0 L 0 8,
3 0 L, 0 83

FIGURE 3.8 Link parameters of the three-link planar manipulator. .



3 [T = (T3 [T 2 [1]
o [ .
-0.174 -.0984 0 1.207 x 10

0984 -0.174 0 0.144

- s 0 . - [R, (6-108)]

3 |0 0 o 1

b -

From the fig 3.7, we can see that

10.05) (0.11

0 0.193
<>{15.13.}-;’[’1*J<0,-< o |
SR N

In the polar coordinates the location will be
EE=10 /30 + 10 70 + 5 Z100
= 22.339 [59.873 = 11.212i + 19.321j + Ok cm

= 0.112i + 0.193j + Ok m

PUMA 560

The D-H Parameters for PUMA 560 manipulator are given in the

Table (P 91). The Position vector of the origin at the end effector



can be calculated using the formula

)

-0 O ©

s [T1 = $[A]...: [A]

where the symbol '"'.[A] has been used instead of "1.[T) to indicate

the transformation between the coordinate systems attached to the

moving links.

fig
i e a - d, 6;
1 0 0 0 6y
2 -90° 0 0 0,
3 0 az ds 03
4 -90° a3 dy B4
5 90° 0 0 65
6 -90° 0 0 Og

FIGURE 3.21 Link parameters of the PUMA 560.



If we do not substitute the numerical values for «;, a,, etc.

and keep it in the symbolic form then we can obtain the expression
- -

Ty o o - T3 Py

33 pz

where

Eq(3.14)

11 = ¢ {ca3(ceCscs — 5486) ~ 82385Cq] + 31 (94C5Cq + C436),
r21 = 8y [ca3(eqescq - $436) = $2385C] — ¢1(s4c5cq + €436),

Ta1 = —5a3(CcecsCs — 548¢) — Ca385Cq,

12 =€) [ca3(~c4cq86 — 84Cq) + 9233586] + 81(caq ~ 84¢536),

m22 = 81 [Caa(—c4C586 — s,c6) + $239586] = €1(Cacs — 84Cs36),

Taz = —833(—CyC585 — $4¢6) + C2335 3¢,
T13 = =€y (€234 85 + 933C5) — 919,35,
T23 = —381(C23C485 + 833Cs) + €1 9435,

T3g = 823C4395 — C23Cs,

Pz = ¢y (8365 +azcyy — dysa) — dysy,
Py =81 [8265 +a3cy3 — dysg3) + dycy,

P: = —Q3823 — 4285 — dyCy3. (3.14)

This equation constitutes the kinematics of the PUMA 560. It

specifies how to compute the position and orientation of the end



effector.

.8 FRAM T M

In the task performance or planning, several "Standard" frames
are necessary. All robot motions are described in terms of these
frames.

(a) The Base Frame {B}

It is located at the base of the manipulator. It is merely
another name for frame °{ }.
(b) The Station Frame {8}

The {S} is located at a task relevant location. It serves as
the standard frame or the reference frame for the task. As far as
the robot system is concerned, {S} serves as the universal frame
and all actions of the robot are made relative to it. It is also
called the WORLD FRAME or the TASK FRAME.

(c) The Wrist Frame {W)}

{W} is affixed to the last 1link of the manipulator. It is
another name for frame {N}, the link frame attached to the last
link of the robot.

(d) The Tool Frame {T)

It is affixed to’the end of the tool, the robot happens to be
holding. The tool frame is specified with respect to the wrist
frame.

(e) The Goal Frame {G}

{G} is a description of the location to which the robot has to

move the tool to. In other words, at the end of the motion the tool

frame {T} should be identical to the Goal Frame {G}. It requires

7



(B}

{S} {G}

v

e

I 1T

FIGURE 3.27 The standard frames.

Camera

Wrist frame

Station
frame

Goal
frame

Base frame

FIGURE 3.28 Example of the assignment of standard frames.



identity in both the location as well as the orientation.

3.9 WHERE IS THE TOOL ?

One of the first capabilities a robot must have is to be able
to calculate the position and orientation of the tool it is holding

with respect to {S}. This can be done using the relationship

HT] = ST %71 ¥ Ty (.18)



CHAPTER 4
INVERSE MANIPULATOR KINEMATICS

In the last chapter we considered the problem of calculating
the position and orientation of the tool relative to the user’s
workstation given the joint angles of the manipulator. Of course,
the other design parameters such as @, @, and q; etc. are also
known. However, in this chapter we Will attempt and solve a more
DIFFICULT problem of solving for the joint angles, given the
position and orientation of the end effector. The reason it is
more difficult is that the equations involved are many and also,
they are nonlinear in nature which is quite clear by inspecting Eq.
below. Here the matrix is

Eq(3.14)

Tin T2 T3 pg
o7 =Tl = |"™1 T2z Tz P,
Tar Taz Taz P,
0 0 0 1

where

11 = ¢ [eaa(cqcscs — 5436) — 82395Cs] + 51(84C5cq + c486),
721 = 81 [caa(cqccg ~ 8456) — 83385Cq) — c1(84c5c6 + C436),

Ta1 = —$33(cqcsc5 — 548¢) — €2355Cg,

T2 = ¢ [eaa(—cqcs86 — s4c6) + $235596] + 51(CqCq ~ 84¢534),
Taz =38, [023(‘04‘3535 ~ 84Ce) + 523853g) — ¢ (cqcs - 84Cs3g),

T3z = —833(—cyc58¢ — 34Cg) + 2385 3¢,



Ti3 = =C;(C23¢485 + 333C5) — 3138435,
T23 = —81(Ca3Ce85 + 823Cs) + C1843s,

T33 = 833C495 — C33Cs,

P: = ¢y (8263 + a3c3 — dysa3] ~ dys,
Py =31 (axcs + aycyy — dysys] + dsey,

P; = —Q3323 — G383 — d Ca3. (3.14)

Cyy=C,C,-S,8,=Cos(0,+6,)
§,,=C,S,+5,C,=Sin(6,+6,)

S, =Sin8,
C,=Cosf,
- -
Iy Py
2T] =
_0 000 IJ

is given. Naturally, the left hand side of Equation (3.14) is
known but all 6, i = 1...6 are unknown. Since this set of
simultaneous transcendental equations has more than one solution¥,
an obvious conclusion is that a given end effector orientation and
position can be attained in more than one ways.

On the other hand, in certain situations when it is beyond the
reach of the manipulator, then no solution can be found. It simply
means that the location and the orientation are not in the

WORKSPACE of the manipulator.



A DEXTROUS WORKSPACE is that volume of space where the

manipulator can reach with all orientations.

A REACHABLE WORKSPACE is one where the manipulator can reach

with at least one orientation.

Clearly, a dextrous workspace is a subset of the reachable

workspace.

fig

FIGURE 4.4 Four solutions of the PUMA 5§0.
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There are no general methods available to solve these
nonlinear set of equations. The solution methods are divided into
two categories: (a) closed form, and (b) numerical.

Closed form solutions are preferred because the computational times
are negligible as compared to the numerical solution (a) Newton
Raphson Technique, or (b) Optimization Techniques.

Within the class of closed form solution are: (a) algebraic
method, and (b) geometric method.

A major recent result is that all systems with revolute and
prismatic joints having a total of six degrees of freedom in a
single series of chain are now solvable(Numerical Solution). 1In
the practical design of manipulators a closed form solution is a
must.

A sufficient condition that a manipulator with six revolute
joints will have a closed form solution is that three neighbouring
joint axes intersect at a point. Almost every manipulator with six
degrees of freedom built today has three axes intefsecting. For
example, axes 4,5, and 6 of the PUMA 560 intersect.

. e Motio t Subs e e < 6

The set of reachable goal frames for a given manipulator

constitutes its reachable workspace. For example a description of

the subspace for a three link manipulator (Planar) is given by



where x, and y give the position of the wrist and ®,

[cop -s¢ 0.0 x
s¢ co 00 vy
0.0 0.0 1.0 0.0

0.0 0.0 0.0 1.0

the

orientation. As x,y, and ¢ are assigned arbitrary values, the

subspace is generated.

4.4 ebrajc Verses Geometric Solutions

For the three link manipulator the inverse solution (only a

few steps) are:

fig

FIGURE 3.7

Link frame assignments.



PROBLEM
GIVEN THE MATRIX FIND 6,, 6,, 6,?

[cp -s¢ 0.0 x ]
s cp 0.0 y

B -
wiTl = 0.0 0.0 1.0 0.0 @7

0.0 0.0 0.0 1.0

- -

Cis ~Sis 0.0 lic +lc,

Sz C 0.0 1s,+Ls,

= (4.6)
00 00 1.0 0.0
00 00 00 1.0 |
where c,, = Cos(8,+0,) etc.
x2+y2-]12-12
= 4.14
c, 2L (4.14)
s, = +y/1-c? (4.15)
6, = Atan2(s,,c,) (4.16)
<Kl = 1,+Lc, 4.19)
K, = Lgs, 4.19)
In tri le OAEE
n triangle i c<d eLledeex
'y
P A
e {
J 7 [
T far |
x,.;) e . /I ﬂ
e o7
P
a ;6\ i Y ><o
L x .




I+l -(x?+y?)
NN

1741} -(x2+y?)

Cos(180-8,) =

-Cosb, = 2L
S
Cos(f,) = 2L
6, = Atan2(y,x) - Atan2(k, k) 4.27)
6, + 0, + 6, = Atan2(s¢,c¢) (4.28)

from which we can solve for 6; because 6, and 0, are already known.In

the Geometric Solution, we try to decompose the spatial Geometry

into several plane geometry.

Here we wish to solve

_ -
Iy Ty I3 Py
I, I, I, P
0 _|Ta In Iy P,
olI] =
Iy Ip Iy P,
0 0 01

= {[TO)] 2[T@)] 3TO)].... ATB,)

Without going into the details,the sequence in which the solution
can be obtained is as follows:

We are given



FIGURE 3.18 Some kinematic parameters and frame assignments for
the PUMA 560 manipulator.

i a; - a; - d; 9,
1 0 0 0 8
2 ~-9¢° 0 0 8o
3 0 az d3 83
4 -90° ajz d, 0,
5 90° 0 0 85
6 -90° 0 0 fg

FIGURE 3.21 Link parameters of the PUMA 560.



1y

-rll r12 rl3 px-
orT] = Iy Tnp Iy P,

Iy Iy Iy P,

0 0 01
2)
Al o, d,, a,
6, = Atan2(p,,p,) - Atan2(d,, +yp} + p; - d7 ) (4.64)
K < PxtPy+p:-ag-al-di-d; @.67)

2a,

0, = Atan2(a,,d,) - Atan2(k,+a’+d?-k?) (4.68)
6, = Atan2[(-a,-a,c.)p,~(,p, +s,p,)(d,-2,8),(2,3,-d)p, ~(a, +2,¢,)(c,p, +s,p,)] (4.73)
8, = 0, - 0, (4.74) |
0, = Atan2(-r,;8, +1),C;, =T 11C,Cpy ~T538,Cpy +1,,8,,) (4.76)

"S5 = Iip(C1C050+8,8,) +15(8,CCy = C,8,) ~T(8,5C,)

Cs = T13(=Cy8,5) +155(=8,8,0) +155(-C,y) (4.79)



8 = Atan2(s,c,) (4.80)
N~ 8 = -ru(clczjs4—s,c)-r21(3102334+c,c)+r31(sz33,)
Ce = ru[(clczsc4+sls)¢5-c,sz,s,] 1, [(8,623C, =C,8)€5=8,8,,8,] =T, (815C,€4 +€,,8)]
0, = Atan2(s,c,) (4.82)
NOTE:

1) Because of the + or - sign appearing in Equations(4.64) and
Equations(4.68), these equations compute 4 solutions.

Leovr~
2) Additionally, £rem more solutions are obtained by "flipping"

the wrist which is expressed mathematically as

R
i
I
R

(4.83)

o
i
o>
+
[y
o0
()
(]

After 8 solutions are computed, some or all of them may need

to be discarded because joint limit limitations.



CHAPTER 5

JACOBIANS : VELOCITIES AND STATIC FORCES

-1 INT

In this chapter, we move beyond static considerations and
discuss the transformations of static forces, velocities and
angular velocities. We have to remember that the motion or forces
involved are in three dimensions and that the body is rigid.

The transformations are done using a matrix called a Jacobian.
It is worth to discuss the notation of the vectors and superscripts

here.
A(B{Vi) = A[IRI®(V}, (5.4)

The subscript Q indicates the velocity of a point Q in the frame
{B}. The Pre superscript indicates that we wish to know this vector
in the frame {A}.

The right hand shows that we can obtain this vector in the
frame {A} by pre-multiplying {V}, by A [R] matrix. By pre
multiplication with [R] we project the vector {V}, parallel to
the axes of the frame {A}, which is geometricaly shown in fig.
5.1.a.

In short, the procedure of calculating the velocity of any

point S on a link would be to calculate (a) the velocity of the



{U} 2y

Py

FIGURE 5.1 Example of some frames in linear motion.

AQB .

FIGURE 5.2 Frame {B

} is rotating with angular velocity 4Qg relative
to frame {A}.



origin of the coordinate system attached to the 1link, and (b) to
this velocity, one has to vectorially add the velocity difference

of the point S and that of this origin.

THE ANGULAR VELOCITY VECTOR

We will use the symbol 0 to indicate the angular velocity
vector. Though the linear velocity describes the attribute of a
point, the angular velocity describes the atribute of a body. Since
we always attach a frame to the body, we can also consider the
angular velocity as the attribute of the frame. The symbol ‘nB
describes the rotation of the frame {B} relative to {A}. It is a
vector; therefore it can be expressed in any frame using an
appropriate [R] matrix.

.3.LINEAR AND LV T F RIGI DI

We can express the velocity of the points either in their own
frames or in some other frames. For example, the velocity of the

point Q in the Fig 5.3 in its own frame will be

"IV} = {Vorigin} + * X B{Q} + B{V},

3x1 3x1 3x1 3x1
and in the frame {A} will be
"Vl = MV et + IR B{VY, + A, x (A[R) B{Q})  (5.13)

It should be noted that in the third term, the cross product is



A
Psorc

FIGURE 5.3 Frame

{B} is translating with velocity AVBORG relative
to frame {A}.

FIGURE 5.6 The velocity of link i is given by vectors v;

and w; which
may be written in any frame, even frame {t}.



defined because the vector ®{Q} has already been transformed into
the frame {A} using %[R] matrix; otherwise the cross product in two

different systems would not have been valid.

2.5.MOTION OF LINKS OF A ROBOT

Each link frame will have some linear motion (velocity) and
angular velocity. We will represent these motions of the origin
and the frame as V, and w; respectively, where the subscript i

stands for the frame {i}.

5.6.VELOCITY PROPAGATION FROM LINK TO LINK

In kineﬁatics, the velocities, etc., are calculated starting
from the base to the increasing link numbers upto the end effector.
This is a very important fact to remember. Another point to note is
that 6 are the relatjve angular velocities; therefore we can write

the relationship.

Ledw) = Tqwy + TR T (8) 2y (5.43)

FIGURE 5.7 Velocity vectors of neighboring links.
3



In Eq. (5.43), the fist term on the right hand side (RHS) 1is the
angular velocity of the link i. The second term contains Zﬂ(é),
a scalar which is the relative angular velocity of the link i+1
with respect to link i and the vector ™(2} is mathematically
expressed as
i1 g
0

1
Therefore the product can also be expressed as

i+1 0
o

i+1e'

This product is expressed in the (i+1)*™ frame. To add both terms
on RHS, they must be expressed in the same frame i, which requires
the premultiplication with the matrix EH[R].

However, if we wish to know the angular velocity of the link

i+1 in the (i+1)™ frame then the equation will be
halwy = PUR] {wy + (8,,) ML {2} (5.45)
The velocity of the (i+1)™ frame (its origin) will be equal to the

velocity of the i'M frame plus the velocity difference between

these two. The corresponding equation will be



vy = FURD Civy o+ qwy x Py ) (5.47)

where the vector ', ,{P} is the Position Difference Vector between
the origins. The equivalent relationships for the case when the

joint (i+l1l) is prismatic are

"alwy = MR) T {w) (5.48)

vy = PURY vy + T{wy x T qPy) + di,, *.,12)

Applying these equations successively from link to link, we can
compute M {w} and M {v}. If we want these velocities in the base

coordinate system then we can write

%iw} = % [R] N {w)

and

%V = %[R] N {v}
5.7. JACOBIANS

The Jacobian is a multidimensional form of the derivative.

Suppose we have six functions

y, = £, (x,,xz,......,xé)
y, = £, (x1,x2,......,x6)
Yo = £ (%, %,.0.... r Xg)



which can be expressed in compact notation as

Y = F(X)

Then we can write the relationship for the partial derivate as

{8Y} = [8F/6x] {éx} (5.61)
[ 6y, )
sy,
Where {6Y} = 4 : r
Layd
6f1/6x1 6f1/3x2 ...... af1/ax6
[OF/Ox] = :
af6/ax1 .............. 6f6/ax3

If the functions f,, f,, etc. are nonlinear then clearly [JF/dx]

will be a function of Xyr Xppeenons etc. Differentiating Eq. (5.61)

we can write

{86Y} (OF/3x]) {6x}

[J] {6x}



Therefore [J] at a given set of values of Xy, X3,... etc. is a
linear transformation between {6§x} and {6Y}. In the field of

Robotics, [J(x)] contains ©; , 1;, etc. In others words, the joint
angles and other design parameters. For example, for a two link

manipulator shown in Fig. 5.8, the corresponding Jacobian is

-1,s8, - 1,8,; -1,5,,
°ta(e)] = (5.67)
i, + 1, 1¢,,
and
3t3(8)] = 1,s, 0
l,c, + 1, 1, (5.66)

The Jacobians transform the joint velocities to the Cartesian

Velocities, i.e.

Ofvy = %3y %éy (5.64)
or
_ ; ]
Ay ALR], (0] | ®[v
]
b= oL L. (5.69)
|
w (0] (R) w
e J




FIGURE 5.8 A two-link manipulator.



Then the transformation equation for a Jacobian will be

A[J(e)]-: ...... S ..... B[J(e)]

DISPLACEMENT EQN.

X% = 1, cose, + 1, cos(8,+8,)

Yo, = 1, sin®; + 1, sin(e,+8,)

X0 -1, siné, -1, sin(8,+6,) :

-
-

o S e e e e e
Yo 1, cose, +1, cos(e,+e,)

{¥} = [J){8} - form of eqn.

-1, sin(e,+6,)

1, cos(e,+8,)

8,

8,

(5.71)



-1, sine, -1, sin(e,+8,) -1, sin(e,+s,) 8,

it

¥, 1, cose, +1, cos(8,+8,) 1, cos(e,+8,)| |8,

-1, cose,6, -1,{cos (8,+8,) } (6,+6,) -1, cos,,(6,+6,) | |6,

-1, sin@,8; -1,{sin(6,+6,) } (6,+8,) -1, sin,,(8,+8,) 8,

IN I

We can rewrite Eq. (5.64) in the form
°(6y = °[31" %vy (5.72)

provided matrix [J] in non singular

IN RITI

1) Workspace boundary singularities are those which occur when
the manipulator is fully stretched out or folded back on itself
such that the end effector is near or at the boundary of the
workspace.

2) Workspace interior singularities are those which occur away
from the workspace boundary and are caused by two or more joint
axes lining up.

When a manipulator is in singular configuration, it has lost

one or more dedgrees of freedom as viewed from the Cartesian space.

It means that in some directjon (or subspace) in Cartesian space



along which it is impossible to move the hand no matter which

joint rates are selected.

To find the condition of singularities one has to equate the

determinant of [J(8)] = 0.

.9.STA

The analysis of static and dynamic forces are of great
importance in the field of robotics. In moving a load, the motors
must apply sufficient torques to cause the motion. In the static
situation, there has to be locking at the joints and therefore,
there must be resisting torques there. In these static situations,
the forces or torques are calculated by considering the robot as
a structure which means there are no degrees of freedom at the

joints.

Defining the symbols
;{f} = £, = Force exerted by link i-1 on link i

on ;{n} = n, = Torque exerted by link i-1 on link i

1

Summing the forces and setting them equal to zero we have
if, - if. =0 (5.76)

and summing torques about the origin of the frame {i} we get

. . . ; _
'm; = 'ny,y - Py, x 'f,, =0 (5.77)

10



{i+1}

FIGURE 5.11 Static force-moment balance for a single link.



These two equations can be rewritten as
LY = T {E) (5.78)

fin} = Tny + P x T (E) (5.79)

Normally Eﬂ{f} is expressed in the frame {i+1}. So we have to

resolve these forces parallel to the it'" frame. If we do so, we can

write
LEY = T, R) USRS 3! (5.80)
Bn} = T IR) Mny + (P x (£} (5.81)

The torque required to keep the system in static equilibrium will

be

T, = ' {n}T. {2} = {n, n, n;} {0
0 (5.82)
1

For a prismatic joint, it will be

T, = T {£} {2y (5.83)

11



5.10 JACOBIANS IN THE FORCE DOMAIN

It can be shown that the relationship

{r} = [J3)7 {F} (5.96)
can be useful in tranforming the Cartesian forces acting at the
hand into the equivalent joint forces. The corresponding equation
in the frame {0} is

{r} = °[(317{F} (5.97)
When the Jacobian loses rank at certain configurations, a small
joint torque can sustain high forces at the end effector. For

example, in the case of a two link manipulator near the

outstretched position, a small torque can sustain large forces.

12
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CHAPTER 6

MANIPULATOR DYNAMICS

In this chapter we study the forces required to cause the

motion. There are two types of problems.

1) Given the vectors { 6 }, {  }, and{ 8 } find {7 }
2) Given{ 7 } find { 6 }, { 6 } and{f }

The first type of problem is useful in controlling the manipulator.

The second type is useful in simulation.

We identify an inertia tensor *[I] as

I -1 -I

‘m-|-L L, -L,
2 T S

I - 'j[(y%z’)p dv

L, - J' I [(x2+zz)p dv

L, - Jrjipxy dv



The elements ) Iw' I,, are mass moment of inertia and the other
terms are mass products of inertia. *[I] is a symmetric matrix, so
it has six independent elements. If the reference frame is the
principal axes then the product of inertia terms are zero and the
matrix is diagonal.
6.4 NEWTON'S EQUATION, EULER’S EQUATION

We will consider each link of a manipulator as a rigid body.
If the location of the centre of mass and inertia tensor are given
then the mass distribution is completely characterized. Newton'’s
equations and their rotational analogies, Euler’s equation,

describe how forces, inertias and accelerations relate.

(F} - m {3} (6.29)

Where {v_} is the acceleration of the mass centre. Equation (6.29)

is the Newton’s equation of motion and

{N} - “mMfo} + {w}x “M{w} (6.30)

w.

FIGURE 6.3 A force F acting at the center of mass of a body causes
the bw to accelerate at 7.



is the Euler’s Equation for this link in frame {C} where the origin

is located at the centre of the mass.
1 I -

We now consider the problem of computing the torques that
correspond to a given trajectory of a manipulator. We assume that

we know the position, velocity and acceleration of the joints i.e.,

{6}, {6}, and {8}

are known. With this knowledge, and the knowledge of the
kinematics and inertia tensors and mass of the links, we can
calculate the joint torques required to cause the motion. To use
the following algorithm it is also know that % {w} = ° (@} = {0},
i.e. the base is fixed. '
The angular velocity and angular acceleration for a rotational

joint are given by

"Hwhig = LRI wY, + 6, (2,,) (6.31)

"Wy, = "R @), + PRI WY, x 6,,,1(2,,,) + 8, (2,,,}

(6.32)

The linear equation for each link frame origin in guch cases is

3



FIGURE 6.4 A moment N is acting on a body, and the body is rotating
with velocity w and accelerating at w.

{r+1}

FIGURE 6.5 The force balance. including inertial forces, for a sin;le
manipulator link.



-

given by

MUV e = PHIRICL@Y, x P + Hw); x (Hwy; x {P,,}) + {V}))

(6.34)

on the other hand, if the joint is prismatic, then one has to use

"Hwy,, = "R W), (6.33)
MV e = LRI (M@, x P+ {w) x (Hw), x P 1)+ {V}))
+2 "Ywy,,, x 4,2, + d.,,""2,} (6.35)

The acceleration of the centre of the link in either of the two

cases will be

Ve = M@y, x Py} + Hw); x (H{w); x {Py)) + T{¥},

(6.36)
The inertial force {F;} and torque {N;} will be given by
T{F} = w' {V} | (6.37)

Ny = Sy ey + ({w) x SI){w})

The effect of gravity on the links can be included quite easily by

setting %{Vv} =9%/{g} where g = 9.81. This fictitious upward

4



acceleration causes exactly the same effect on the links as gravity

would. This does not introduce additional computational expense.

8.T T MANIP ION
THE STATE SPACE EQUATION

It is quite often convenient to express the dynamic equations

in the general form as

{1} = [M(8)1{6} + {V(8,8)} + {G(8)} (6.59)
nxl nxn nxl nxl
Where

[M(8)] is the nxn mass matrix

{V(8,8)} is an nx1 vector having coriolis and centrifugal terms
and {G(®)} is an nx1 vector of gravity terms.
For a two link manipulator shown in fig.6.6, these vectors and

matrices are

-
1,’m,+21,1,m,c,+1,2(m,+m,) 1,%m,+1,1,m,c,

(M(8)] =
B 1,2m+1,1,mc, 1,’m,
(6.60)
-m,1,1,8,6,%- 2m,1,1,s,6,6,
{v(e,8)} = (6.61)
m211lzszé12
2x1



117777777777 7777777777777

FIGURE 6.6 Two-link with point masses at distal end of links.



m,1,9¢,,+(m+m,) 1,gc,
(G(a)r = 4 (6.62)

m,1,9¢,,
2x1

—

THE CONFIGURATION SPACE EQUATION

One can rewrite Eq. (6.59) in the form
[ coriolis coefficients

{1} = [M(8)]{8} + [B(8)1{8 8} + [C(8)]1{6%} + {G(8)} (6.63)

nxn nx1 nx(n-1) /2

where

{6 6}= [6,6,...6 .61 (6.64)
[C(8)]- centrifugal coefficients

{8%)= [6,%6,2...6 27 (6.65)
Eq. (6.63) gives a forﬁ in which parameters are only a function of

joint position. It shows that the dynamics is computation

intensive.



A -

. DY IC Si l

Problem — Given {r}, find {®}, {6}, {6}.
Given the dynamics equations written in the closed form as in
Eq. (6.59), simulation requires solving the dynamic equation for

acceleration
{6} = [M){1-V(8,8)-G(Q)-F(8,6)} (6.115)

We may then apply any of the several known Numerical Integration
Schemes to integrate acceleration to compute future position and
velocities.
Given initial conditions of the manipulator, usually in the
form
{6(0)} = ,{8}
and
{6(0)} = {0.0}.
We numerically integrate Eq. (6.115) forward in time steps of size

Ot.

EULER INTEGRATION SCHEME

At first calculate
{6(t+ot)} = {6(t)} + {8(t))ot

{8 (t+at)} {8(t)} + {6(t)}ot + Yot2{8(t)} (6.117)



and then substitute these two {6(t+ot)} and {e(t+ot)} in Eq. (6.115)
to calculate {6(t+ot)}. In this way, the position, velocity, and

acceleration caused by a certain torque function can be calculated.
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THE JOINT IS ROTATIONAL

STEP 1:

TYPE ROTATIONAL MATRIX [R] NOT ITS TRANSPOSE
ENTER THE MATRIX (3X3) ROW BY ROW

0.8659 -0.5001 O.

0.5001 0.8659 0.

O. 0. 1.

ENTER OMEGA[I-1] VECTOR ?

0. 0. 0.

ENTER THETADOTDOT (SCALAR) ?
4

ENTER THETADOT (SCALAR) ?
3.
ANGULAR VELOCITY OMEGA[I] IS
0.0 0.0 3.0

STEP 2:
ENTER OMEGADOT[I-1] VECTOR ?
0. 0. O.

ANGULAR ACCELERATION OMEGADOT({I] IS
0.0 0.0 4.0

STEP 3:

ENTER VDOT[I-1] VECTOR ?
0. 9.81 0.

ENTER P[(I-1] VECTOR °?

0. 0. O.

THE VDOT(I] VECTOR IS :
4.905 8.494 0.

STEP 4:

ENTER PC[I] VECTOR ?
0.15 0.0 0.0

THE VDOT[{CI] VECTOR IS :
3.556 9.094 0.

STEP 5:

ENTER MASS M ?

2.965

THE FORCE VECTOR F(I) IS :
10.543 26.965 0.0

STEP 6

ENTER I MATRIX ([3X3] ROW BY ROW ?
5.93e-4 0. 0.

0. 2.253e-2 0.

0. 0. 2.253e-2

THE TORQUE VECTOR N(I) IS :
0.0000000E+00 0.000000CE+00 9.012e-2

ENTER

1: CONTINUE
2: OVER

1



:‘EgE JOINT IS ROTATIONAL
EP 1:
TYPE ROTATIONAL MATRIX [R] NOT ITS TRANSPOSE
ENTER THE MATRIX (3X3) ROW BY ROW
0.1730 =0.9849 0.0

0.9849 0.1730 0.0

0.0 0.0 1.0
ENTER OMEGA[I~-1] VECTOR ?
0. 0. 3.

ENTER THETADOTDOT (SCALAR) ?
5.
ENTER THETADOT (SCALAR) ?
2.
ANGULAR VELOCITY OMEGA[I] IS
0.0 0.0 5.000000

STEP 2:
ENTER OMEGADOT[I-1] VECTOR ?
0. 0. 4.

ANGULAR ACCELERATION OMEGADOT[I] IS
0.00 0.00 9.000000

STEP 3:
ENTER VDOT[I-1] VECTOR ?
4.905 8.494 O.

ENTER P[I-1] VECTOR ?

0.3 0. O.

THE VDOT[I] VECTOR IS :
9.929 -0.495 0.

STEP 4:
ENTER PC[I] VECTOR ?
0.125 0.0 0.0

THE VDOT[CI] VECTOR IS :
6.804 0.630 O.

STEP 5:

ENTER MASS M ?

2.471

THE FORCE VECTOR F(I) IS :
16.812 1.557 0.0

STEP 6

ENTER I MATRIX [3X3] ROW BY ROW ?
4.94E-4 O. 0.

0. l1.31e-2 0.

0. 0 1.31e-2

THE TORQUE VECTOR N(I) IS :
0.0000000E+00 0.0000000E+00 0.118

ENTER
1: CONTINUE
2: OVER

1



THE JOINT IS ROTATIONAL

STEP 1:

TYPE ROTATIONAL MATRIX [R] NOT ITS TRANSPOSE
ENTER THE MATRIX (3X3) ROW BY ROW

1.0 0.0 0.0
0.0 1.0 0.0

0.0 0.0 1.0
ENTER OMEGA[I-1] VECTOR ?
0. 0. 5.

ENTER THETADOTDOT (SCALAR) ?
7.
ENTER THETADOT (SCALAR) 2
4.
ANGULAR VELOCITY OMEGA[I] IS
0.0 0.0 9.000000

STEP 2:
ENTER OMEGADOT([I-1] VECTOR ?
0. 0. 9.

ANGULAR ACCELERATION OMEGADOT[I] IS
0.0 0.0 16.0

STEP 3:
ENTER VDOT([I-1] VECTOR ?
9.929 -0.495 0.00

ENTER P[I-1] VECTOR ?
0.25 0.0 0.0

THE VDOT[I] VECTOR IS :
3.679 1.755 0.0

STEP 4:

ENTER PC[I] VECTOR ?

0.1 0.0 0.0

THE VDOT[CI] VECTOR IS :
-4.421 3.355 0.0

STEP 5:

ENTER MASS M ?

1.977

THE FORCE VECTOR F(I) IS :
-8.740 6.633 0.00

STEP 6

ENTER I MATRIX (3X3] ROW BY ROW ?
3.95E-4 0. 0.

0. 6.78E-3 0.

0 0. 6.78E-3

THE TORQUE VECTOR N(I) IS :
0.0000000E+00 0.0000000E+00 0.1085

ENTER
1: CONTINUE
2: OVER

2
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¥

THE FORWARD RECURSION IS OVER
qACKWARD ITERATION STARTS HERE

STEP 7:

ENTER [R] MATRIX FOR I TO I+1 ?
1. 0. 0.

0. 1. O.

0. 0. 1.

ENTER VECTOR fo(I+1)?
8.6602 5.0 0.0

ENTER VECTOR F OF LINK I?
-8.740 6.633 0.0

f VECTOR OF LINK I:
-7.97E-2 11.633 0.0

CROSS CHECKING OF FORCE RESULTS:
egn{é6. )

L.H.S - R.H.S§ = ( 0 0 0}

CORRECT IF RESIDUE VECTOR IS ZERO

PRINTING RESIDUE VECTOR BELOW:
0.0 -4.7E-7 0.

STEP 8

ENTER N(I) VECTOR?
0.0 0.0 0.1085
ENTER n(I+1l) VECTOR?
0. 0. 0.
ENTER PC(I) VECTOR?
.1 0.0 0.0

ENTER P(I) VECTOR?
0.2 0.0 0.0

n(Il) vector is ?

0.0 0.0 1.7718

CROSS CHECKING OF TORQUE RESULTS
egqn{é6. )

L.H.5 - R.H.S = {0 0 0}

CORRECT IF RESIDUE VECTOR IS ZERO

PRINTING RESIDUE VECTOR BELOW
0.0 0. 6.705E-8

ENTER
1:CONTINUE
2:0VER

1



THE FORWARD RECURSION IS OVER
BACKWARD ITERATION STARTS HERE

STEP 7:

ENTER [R] MATRIX FOR I TO I+l ?
1. 0. 0.

0. 1. 0.

0. 0. 1.

ENTER VECTOR fo(I+1)?
-7.97E-2 11.633 0.

ENTER VECTOR F OF LINK I?
16.812 1.557 0.

f VECTOR OF LINK I:
16.732 13.190 0.

CROSS CHECKING OF FORCE RESULTS:
eqn(6. )

L.H.S - R.H.S = {0 0 0}

CORRECT IF RESIDUE VECTOR IS ZERO

PRINTING RESIDUE VECTOR BELOW:
-4.,69E-7 1.19E-7 0.0

STEP 8

ENTER N(I) VECTOR?
0.0 0.0 0.118
ENTER n(I+1) VECTOR?
0. 0. 1.7718

ENTER PC(I) VECTOR?
0.125 0.0 0.0
ENTER P(I) VECTOR?
0.25 0.0 0.0
n(I) vector is ?

0.0 0.0 4.992

CROSS CHECKING OF TORQUE RESULTS
egn (6. )

L.H.S - R.H.S = {0 0 0}

CORRECT IF RESIDUE VECTOR IS ZERO

PRINTING RESIDUE VECTOR BELOW
0. 0. -3.129E-7

ENTER
1:CONTINUE
2:0OVER

1



S

THE FORWARD RECURSION IS OVER
SACKWARD ITERATION STARTS HERE

STEP 7:

ENTER [R] MATRIX FOR I TO I+1 ?
0.1730 =-0.9849 0.0
0.9849 0.1730 0.0

0.0 0.0 1.0

ENTER VECTOR fo(I+1)?
16.732 13.190 O.

ENTER VECTOR F OF LINK I?
10.543 26.965 0.0

f VECTOR OF LINK I:
0.4468 45.726 0.

CROSS CHECKING OF FORCE RESULTS:
egn (6. )

L.H.S - R.H.S = {0 0 0}

CORRECT IF RESIDUE VECTOR IS ZERO

PRINTING RESIDUE VECTOR BELOW
0. 1.907E-6 0.

STEP 8

ENTER N(I) VECTOR?
0.0 0.0 0. 0. 9.012E-2
ENTER n(I+1l) VECTOR?
0. 0. 0. 0. 4.992
ENTER PC(I) VECTOR?
0.1% 0.0 0.0
ENTER P(I) VECTOR?
0.3 0.0 0.0
n(I) vector is ?
0.0 0.0 14.7552

CROSS CHECKING OF TORQUE RESULTS
eqn(6. )

L.H.S - R.H.S = (0 0 0}

CORRECT IF RESIDUE VECTOR IS ZERO

PRINTING RESIDUE VECTOR BELOW
0. 0. -1.639E-7

ENTER
1:CONTINUE
2:0VER

2
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Chapter 9

LINEAR CONTROL OF MANIPULATORS

9.1 INTRODUCTION

We would want to control the wrist motions to take the tool through a specified
space curve. To achieve this, we would represent the dynamics of the system by a linear
differential equation whose solutions are simpler and known. A linear differential
equation has constant coefficients. Since these coefficients are a function of joint
variables, the solution will be valid in the neighborhood of a point in space. Since the
space curve is made up of large number of points, one has to recompute each of the

coefficients and the forces involved, point by point.

r=M(6,)0,+V(8,6,)+G(6,) Equation (9.1)

o

TEP 1

In robotic control problems, one carries out the inverse kinematic analysis to calculate

.. fr ificati
6,6,6, om the specification of the task.



STEP 2

Compute the (1) by substituting kinematic parameters 0 etc. on the right hand side
of Equation (9.1).

If our dynamic model was accurate then the end effector would move along the
specified path. However, this would not happen. Actually, there would be errors. In an
open loop control, one applies the (1)) vector and no effort is made to correct for the
eIToTS.

On the other hand, to achieve greater accuracy, one modifies the applied torque
based on the error at the previous instant of time. These errors are used to calculate
additional torques, besides the theoretical torque vector. This process of correction s
called the feed-back which is dependent upon the actual position, actual velocity of the
end effector which is sensed by the sensors, and the corresponding desired position, or
desired velocity etc, one can define the errors as:

E=6,-0,

. . . (9.2)
E=6,-6,

Such a system of torque based control is called closed - loop system. A stable system is

one where the errors build up with time.



9.4 CONTROL OF SECOND-ORDER SYSTEMS

. /

™ 0

/
-’____..m-mr%n—é
S,

FIGURE 9.6 A damped spring-mass system with an actuator.

A second order system with a forcing function is written as:
. . 9.34
mix+bx+kx=f ©34)

Suppose we have sensors which can measure and report X, X

etc.
We propose a control law which computes the force which should be applied by
-the actuator (motor for rotary motion or solenoid for linear motion). This force is
proportional to the displacement and velocity errors (by applying in opposite direction).

Here the proportionality constaints are k,and k, The minus sign is to compensate for

the positive or negative values of ;
x and X



In this case, the resulting differential equation will be

. Equation 9.36
mx+bx+kx=—k ,x—k x
mx+(b+k )x+(k+k )x=0 Equation 9.37
. 1 1o
mi+b x+k x=0 Equation 9.38

Here we have
b'=b+k, kK=k+k,
Here k,, k, are control gains. Often these k, and k, are chosen such that we have a
critically damped system. These values should not make b’ or k' negative; in which case

if negative the system will become unstable.

Im{s} ﬁ; x(t)1|

X% <
\ AN~
g

X 52

FIGURE 9.4 Root location and respouse tu initial conditions for an

underdamped system.
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FIGURE 9.5 Root location and response to initial conditions for a
critically damped system.

9.6 TRAJECTORY FOLLOWING CONTROL
A trajectory is specified where the subscript d represents the desired value.
Defining error as e = x ;- x, a servo control law which will cause trajectory following is
fl=x,+k etk e 050
If we combine this equation with the equation of motion of a unit mass equation
(9.44), which is 7
we get

L . (9.52)
X=X, +k etk e

This 1s a second order differential equation where, we can choose the coefficients

k ., and k , to make the error €, stable.



9.7 DISTURBANCE REJECTION

We have the equation

e+k é+k _ e=0
and , we want to maintain good performance (small errors) even in the presence of some
external disturbance or noise.
The error equation in this case is

F+k,é+k e= fa 9.53)

STEADY STATE ERROR

Let us consider the simplest case when f, = constant (like a static force).

The steady state response will also be a constant value

ke = f 9.55)

e= fauul K, (9.56)
The higher the &, value, the smaller will be the error.
ADDITION OF AN INTEGRAL TERM

Suppose we have an additional integral term



f‘:jc'c+kvé+kpe+k,.fedt ©.57)

This results in the error equation as

(9.58)

e+k e+k etk fedi=f,,

This term has been added to make the steady state error = 0
If e(t) <O for t <0. We can write for t > 0 by differentiating Equation (9.58) which in the

case of constant distanbance becomes {here 1, = 0}.

or e=0
Here one can solve Equation (9.59) to calculate the error e as a function of time.
The form of Equation (9.57) is called PID (Proportional Integral Derivative

Control Law).






IMAGE PROCESSING AND ANALYSIS WITH VISION
SYSTEMS

INTRODUCTION

There is a very large body of work associated with vision systems, image processing, and
pattern recognition that addresses many different hardware- and software- related topics
This information has been accumulated since the 1950s, and with the added interest in the
subject from different sectors of the industry and economy, it is growing rapidly. The
enormous number of papers published every year indicates that there must be many
useful techniques constantly appearing in the literature. At the same time, it also means
that a lot of these techniques may be unsuitable for other applications. In this chapter, we
will study and discuss some fundamental techniques for image processing and image
analysis, with a few examples of routines developed for certain purposes. The chapter
does not profess to be a complete survey of all possible vision routines, but only an
introduction.. It is recommended that the interested reader continue studying the subject
through other references.

The next few sections present some fundamental definitions of terms and basic concepts

that we will use throughout the chapter.

IMAGE PROCESSING VERSUS IMAGE ANALYSIS

Image processing relates to the preparation of an image for later analysis and use. Images
captured by a camera or a similar technique (e.g., by a scanner) are not necessarily in a

form that can be used by image analysis routines. Some may need improvement to reduce
noise, others may need to be simplified, and still others may need to be enhanced, altered,
segmented, filtered, etc. Image processing is the collection of routines and techniques that

improve, simplify, enhance, or otherwise alter an image.

What Is an Image ?



Image analysis is the collection of processes in which a captured image that is prepared
by image processing is analyzed in order to extract information about the image and to

identify objects or facts about the object or its environment.

TWO- AND THREE-DIMENSIONAL IMAGES

Although all real scenes are three dimensional, images can either be two or three
dimensional. Two-dimensional images are used when the depth of the scene or its
features need not be determined. As an example, consider defining the surrounding
contour or the silhouette of an object. In that case, it will not be necessary to determine
the depth of any point on the object. Another example is the use of a vision system for
inspection of an integrated circuit board. Here too, there is no need to know the depth
relationship between different parts, and since all parts are fixed to a flat plane, no
information about the surface is necessary. Thus, a two-dimensional image analysis and
inspection will suffice.

Three-dimensional image processing deals with operations that require motion detection,
depth measurement, remote sensing, relative positioning, and navigation. CAD/CAM-
related operations also require three-dimensional image processing, as do many
inspection and object recognition tasks. Other techniques, such as computed tomography
(CT) scan, are also three dimensional. In computed tomography, either X-rays or
ultrasonic pulses are used to get images of one slice ( Section ) of the object at a time,
and later, all of the images are put together to create’ a three-dimensional image of the
internal characteristics of the object.

All three-dimensional vision systems share the problem of coping with many- to-one
mappings of scenes to images. To extract information from these scenes, image-
processing techniques are combined with artificial intelligence techniques. When the
system is working in environments with known characteristics (e.g., controlled lighting),
it functions with high accuracy and speed. On the contrary, when the environment is
unknown or noisy and uncontrolled (e.g., in underwater operations), the systems are not
very accurate and require additional processing of the information. Thus, they operate at

low speeds. In addition, a three-dimensional coordinate system has to be dealt with.



WHAT IS AN IMAGE ?

An image is a representation of a real scene, either in black and white or in color, and
either in print form or in a digital form. Printed images may have been reproduced either
by multiple colors and gray scales (as in color print or half-tone print) or by a single ink
source. For example, in order to reproduce a photograph with real half tones, one has to
use multiple gray inks, which, when combined, produce an image that is somewhat
realistic. However, in most print applications, only one color of ink is available (such as
black ink on white paper in a newspaper or copier). In that case, all gray levels must be
produced by changing the ratio of black versus white areas (the size of the black dot).

Imagine that a picture to be printed is divided into small sections.

(a) (b) )
Figure 8.1 Examples of gray in-
tensity creation in printed images.
In print, only one color of ink is
used, while the ratio of the black
to the white area of the pixel is
changed to create different gray
levels.

In each section, if the ink portion of the section is smaller compared to the white-blank
area, the section will look lighter gray. (See examples in Figure 8.1.) If the black ink area
is larger compared to the white area, it will look darker gray. By changing the size of the
printed dot, many gray levels may be produced, and collectively, a gray-scale picture may
be printed.

Unlike printed images, television and digital images are divided into small sections called
picture cells, or pixels (in three-dimensional images, they are called volume cells or
voxels), where the size of all pixels are the same, while the intensity of light in each
pixel is varied to create the gray images. Since we deal with digital images, we will

always refer to pixels of the same size with varying intensities.

ACQUISITION OF IMAGES



There are two types of vision cameras: analog and digital. Analog cameras are not very
common any more, but are still around; they used to be standard at television stations.
Digital cameras are much more common and are mostly similar to each other. A video
camera is a digital camera with an added videotape recording section. Otherwise, the
mechanism of image acquisition is the same as in other cameras that do not record an
image. Whether the captured image is analog or digital, in vision systems the image is
eventually digitized. In a digital form, all data are binary and are stored in a computer file
or memory chip.

The following short discussion is about analog and digital cameras and how their images
are captured. Although analog cameras are not common anymore, since the television
sets available today are still mostly analog, understanding the way the camera works
will help in understanding how the television set works. Thus, both analog and digital

cameras are examined here.

8.5.1 Vidicon Camera

A vidicon camera is an analog camera that transforms an image into an analog electrical
signal. The signal, a variable voltage (or current) versus time, can be stored, digitized,
broadcast, or reconstructed into an image. Figure 8.2 shows a simple schematic of a
vidicon camera. With the use of a lens, the scene is projected onto a screen made up of
two layers: a transparent metallic film and a photoconductive mosaic that is sensitive to
light. The mosaic reacts to the varying intensity of light by varying its resistance. As a
result, as the image is projected onto it, the magnitude of the resistance at each location
varies with the intensity of the light. An electron gun generates and sends a continuous

cathode beam (a stream of electrons with a negative
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‘Figure 8.2 Schematic of a vidicon camera.

Voltage Electron gun Time
Acquisition Photosensitive Transparent metallic film mosaic Capacitor deflectors

Figure 8.2 Schematic of a vidicon camera.

charge) through two pairs of capacitors (deflectors) that are perpendicular to each other.
Depending on the charge on each pair of capacitors, the electron beam is deflected up or
down, and left or right, and is projected onto the photoconductive mosaic. At each
instant, as the beam of electrons hits the mosaic, the charge is conducted to the metallic
film and can be measured at the output port. The voltage measured at the output is V =
IR, where 1 is the current (of the beam of electrons), and R is the resistance of the mosaic
at the point of interest.

Now suppose that we routinely change the charges in the two capacitors and thus deflect
the beam both sideways and up and down, so as to cause it to scan the mosaic (a process
called a raster scan). As the beam scans the image, at each instant the output is
proportional to the resistance of the mosaic or proportional to the intensity of the light
on the mosaic. By reading the output voltage continuously, an analog representation of

the image can be obtained.



To create moving images in televisions, the image is scanned and reconstructed 30 times
a second. Since human eyes possess a temporary hysteresis effect of about 1/10 second,
images changing at 30 times a second are perceived as continuous and thus moving. The
image is divided into two 240-line sub-images, interlaced onto each other. Thus, a
television image is composed of 480 image lines, changing 30 times a second. In order
to return the beam to the top of the mosiac, another 45 lines are used, creating a total of
525 lines. In most other countries, 625 lines are the standard. Figure 8.3 depicts a raster
scan in a vidicon camera.

If the signal is to be broadcast, it is usually frequency modulated (FM); that is, the
frequency of the carrier signal is a function of the amplitude of the signal. The signal is
broadcast and is received by a receiver, where it is de-modulated back to the original
signal, creating a variable voltage with respect to time. To re-create the image — for
example, in a television set — this voltage must be converted back to an image. To do
this, the voltage is fed into a cathode-ray tube (CRT) with an electron gun and similar
deflecting capacitors, as in a vidicon camera. The intensity of the electron beam in the
television is now proportional to the voltage of the signal, and is scanned similar to the

way a camera does. In the television set, however, the beam Output voltage
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"Figure 8.3 A raster scan depiction of a
vidicon camera.
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Scan 2
Scan 1

Figure 8.3 A raster scan depiction of a vidicon camera.

Return beam is projected onto a phosphorous-based material on the screen, which glows

proportionally to the intensity of the beam, thus re-creating the image.

For color images, the projected image is decomposed into the three colors of red, green,
and blue (ROB). The exact same process is repeated for the three images, and three
simultaneous signals are produced and broadcast. In the television set, three electron guns
regenerate three simultaneous images in RGB on the screen, except that the screen has
three sets of small dots (pixels) that react by glowing in ROB colors and are repeated
over the entire screen. All color images in any system are divided into ROB images and

are dealt with as three separate images.

If the signal is not to be broadcast, it either is recorded for later use, is digitized (as

discussed later), or is fed into a monitor for direct viewing.

8.5.2 Digital Camera



A digital camera is based on solid-state technology. As with other cameras, a set of lenses
is used to project the area of interest onto the image area of the camera. The main part of
the camera is a solid-state silicon wafer image area that has hundreds of thousands of
extremely small photosensitive areas called photo sites printed on it. Each small area of
the wafer is a pixel. As the image is projected onto the image area, at each pixel location
of the wafer a charge is developed that is proportional to the intensity of light at that
location. (Thus, a digital camera is also called a charge coupled device, or CCD camera,
and a charge integrated device, or CID camera). The collection of charges, if read
sequentially, would be a representation of the image pixels. (See Figure 8.4).

The wafer may have as many as 520,000 pixels in an area with dimensions of a fraction
of an inch (/16 x %4). Obviously, it is impossible to have direct wire connections to all of
these pixels to measure the charge in each one. To read such an enormous number of
pixels, 30 times a second the charges are moved to optically isolated shift registers next
to each photo site, are moved down to an output line, and then are read [1,2]. The result is
that every thirtieth of a second the charges in all pixel locations are read sequentially and
stored or recorded. The output is a discrete representation of the image — a voltage
sampled in time — as shown in Figure 8.5(a). Figure 8.5(b) is the CCD element of a VHS
camera.

Similar to CCD cameras for visible lights, long-wavelength infrared cameras yield a

television like image of the infrared emissions of a scene [3].
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Figure 8.4 Image acquisition with a digital camera involves the development, at
each pixel location, of a charge proportional to the light at the pixel. The image is
then read by moving the charges to optically isolated shift registers and reading
them at a known rate.
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Figure 8.5 (a) Image data collection model. (b) The CCD element of a VHS
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8.6 DIGITAL IMAGES

The sampled voltages from the aforementioned process are first digitized through an
analog-to-digital converter (ADC) and then either stored in the computer storage unit in
an image format such as TIFF, JPG, Bitmap, etc., or displayed on a monitor. Since it is
digitized, the stored information is a collection of U’s and 1’s that represent the intensity
of light at each pixel; a digitized image is nothing more than a computer file that contains
the collection of these 0’s and I’s, sequentially stored to represent the intensity of light
at each pixel. The files can be accessed and read by a program. can be duplicated and
manipulated, or can be rewritten in a different form. Vision routines generally access this
information, perform some function on the data, and either display the result or store the
manipulated result in a new file.

An image that has different gray levels at each pixel location is called a gray image. The
gray values are digitized by a digitizer, yielding strings of 0’s and 1’s that are
subsequently displayed or stored. A color image is obtained by superimposing three
images of red, green, and blue hues, each with a varying intensity and each
equivalent to a gray image (but in a colored state). Thus, when the image is di gitized,
it will similarly have strings of U’s and I’s for each hue. A binary image is an image
such that each pixel is either fully light or fully dark — a 0 or a 1. To achieve a
binary image, in most cases a gray image is converted by using the histogram of the
image and a cut-off value called a threshold. A histogram determines the distribution of
the different gray levels. One can pick a value that best determines a cutoff level with

least distortion and use that value as a threshold to assign 0’s (or “off”) to all pixels

whose gray levels are below the threshold value and to assign I’s (or “‘on”) to all

pixels whose gray values are above the threshold. Changing the threshold will
change the binary image. The advantage of a binary image is that it requires far less

memory and can be processed much faster than gray or colored images.

8.7 FREQUENCY DOMAIN VS. SPATIAL DOMAIN

10



Many processes that are used in image processing and analysis are based on the
frequency domain or the spatial domain. In frequency-domain processing, the frequency

spectrum of the image is used to alter, analyze, or process the image. In this case, the
individual pixels and their contents are not used. Instead, a frequency

representation of the whole image is used for the process. In spatial-domain
processing, the process is applied to the individual pixels of the image. As a result, each
pixel is affected directly by the process. However, the two techniques are equally
important and powerful and are used for different purposes. Note that although spatial-
and frequency-domain techniques are used differently, they are related. For example,
suppose that a spatial filter is used to reduce noise in an image. As a result, noise level in
the image will be reduced, but at the same time, the frequency spectrum of the image will
also be affected, due to the reduction in noise.

The next several sections discuss some fundamental issues about frequency and spatial

domains. The discussion, although general, will help us throughout the entire chapter.
8.8 FOURIER TRANSFORM AND FREQUENCY CONTENT OF A SIGNAL

As you may remember from your mathematics or other courses, any periodic signal may
be decomposed into a number of sines and cosines of different amplitudes and
frequencies as follows:

1 o

o0
A 5t > a,cosnwt + > b, sin nwt.
n=1 n=1

If you add these sines and cosines together again, you will have reconstructed the
original signal. Equation (1) is called a Fourier series, and the collection of different
frequencies present in the equation is called the frequency spectrum or frequency content
of the signal. Of course, although the signal is in the amplitude—time domain, the
frequency spectrum is in the amplitude—frequency domain. To understand this concept

better, let’s look at an example.
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Consider a signal in the form of a simple sine function like f(t) = sin (t). Since this signal
consists of only one frequency with a constant amplitude, if we were to plot the signal in
the frequency domain, it would be represented by a single line at the given frequency, as
shown in Figure 8.6. Obviously, if we plot the function represented by the arrow in
Figure 8.6(b) with the given frequency and amplitude, we will have reconstructed the

same sine function. The plots in Figure 8.7 are similar and represent

ft) = Z,-13..15(1/n) sin(nt)
The frequencies are also plotted in the frequency—amplitude domain. Clearly, when the
number of frequencies contained in f(t) increases, the summation becomes closer to a

square function.

Theoretically, to reconstruct a square wave from sine functions, an infinite number of
sines must be added together. Since a square wave function represents a sharp change,
this means that rapid changes (such as an impulse, a pulse, a square wave, or anything
else similar to them or modeled by them) have a large number of frequencies. The
sharper the change, the higher is the number of frequencies needed to reproduce it. Thus,
any video (or other) signal that contains sharp changes (such as noise, high contrasts, or

an impulse or step function) or that has
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"Figure 87 Sine functions in the time and frequency domain for a successive set of
frequencies. As the number of frequencies increases, the resulting signal becomes
closer to a square function.

detailed information (high-resolution signals with fast, varying changes) will have a
larger number of frequencies in its frequency spectrum.

A similar analysis can be applied to non-repeating signals as well. (The equation used
is a Fourier transform or, sometimes, a fast Fourier Transform, or FFT) Although
we will not discuss the details of the Fourier transform in this book, suffice it to say that
an approximate frequency spectrum of any signal can be found. Although,
theoretically, there will be infinite frequencies in the spectrum, generally, some of the
major frequencies within the spectrum will have larger amplitudes. These major
frequencies, or harmonics, are used in identifying and labeling a signal, including

recognizing voices, shapes, objects, etc.
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8.9 FREQUENCY CONTENT OF AN IMAGE: NOISE, EDGES

Consider sequentially plotting the gray values of the pixels of an image (on the y axis)
against (a ) time or ( b ) pixel location (on the x-axis) as the image is scanned. (See
Section 8.5.) The result will be a discrete time plot of varying amplitudes showing the

intensity of light at each pixel, as indicated in Figure 8.8. Let’s say that we are on the
ninth row and are looking at pixels 129—144. The intensity of pixel 136 is very

different from the intensities of the pixels around it and may be considered to be noise.
(Generally, noise is information that does not belong to the surrounding environment.)
The intensities of pixels 134 and 141 are also different from the neighboring pixels and
may indicate a transition between the object and the background; thus, these pixels can

be construed as representing the edges of the object.

Although we are discussing a discrete (digitized) signal, it may be transformed into a
large number of sines and cosines with different amplitudes and frequencies that, if added
together, will reconstruct the signal. As discussed earlier, slowly changing signals (such
as small changes between succeeding pixel gray values) will require few sines and
cosines in order to be reconstructed, and thus have low frequency content. On the other
hand, quickly varying signals (such as large differences between pixel gray levels) will
require many more frequencies to be reconstructed and thus have high frequency content.
Both noises and edges are instances in which one pixel value is very different from the
neighboring ones. Thus, noises and edges create the larger frequencies of a typical
frequency spectrum, whereas slowly varying gray level sets of pixels, representing the
object, contribute to the lower frequencies of the spectrum.

However, if a high-frequency signal is passed through a low-pass filter — a filter that
allows lower frequencies to go through without much attenuation in amplitude, but that

severely attenuates the amplitudes of the higher frequencies in the
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Figure 8.8 Noise and edge information in an intensity diagram of an image. The pixels with
intensities that are much different from the intensities of neighboring pixels can be consid-
ered to be edges or noise.
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signal — the filter will reduce the influence of all high frequencies, including the noises
and edges. This means that, although a low-pass filter will reduce noises, it will also
reduce the clarity of an image by attenuating the edges, thus softening the image
throughout. A high-pass filter, on the other hand, will increase the apparent effect of
higher frequencies by severely attenuating the low-frequency amplitudes. In such
cases, noises and edges will be left alone, but slowly changing areas will disappear
from the image.

To see how the Fourier transform can be applied in this case, let’s look at the data of
Figure 8.8 once again. The grayness level of the pixels of row 9 is repeated in Figure
8.9(a). A simple first-approximation Fourier transform of the gray values [4] was
performed for the first four harmonic frequencies, and then the signal was reconstructed,
as shown in Figure 8.9(b). Comparing the two graphs reveals that a digital, discrete signal
can be reconstructed, even if its accuracy is dependent on the number of sines and

cosines, as well as the method of integration, etc.
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Figure 8.9 (a) Signal. (b) Discrete signal reconstructed from the Fourier trans-
form of the signal in (a), using only four of the first frequencies in the spectrum.

Figure 8.9 (a) Signal. (b) Discrete signal reconstructed from the Fourier transform of the

signal in (a), using only four of the first frequencies in the spectrum.

16





