CHAPTER 6

MANIPULATOR DYNAMICS

In this chapter we study the forces required to cause the

motion. There are two types of problems.

1) Given the vectors { 6 }, {  }, and{ 8 } find {7 }
2) Given{ 7 } find { 6 }, { 6 } and{f }

The first type of problem is useful in controlling the manipulator.

The second type is useful in simulation.

We identify an inertia tensor *[I] as
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The elements ) Iw' I,, are mass moment of inertia and the other
terms are mass products of inertia. *[I] is a symmetric matrix, so
it has six independent elements. If the reference frame is the
principal axes then the product of inertia terms are zero and the
matrix is diagonal.
6.4 NEWTON'S EQUATION, EULER’S EQUATION

We will consider each link of a manipulator as a rigid body.
If the location of the centre of mass and inertia tensor are given
then the mass distribution is completely characterized. Newton'’s
equations and their rotational analogies, Euler’s equation,

describe how forces, inertias and accelerations relate.

(F} - m {3} (6.29)

Where {v_} is the acceleration of the mass centre. Equation (6.29)

is the Newton’s equation of motion and

{N} - “mMfo} + {w}x “M{w} (6.30)
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FIGURE 6.3 A force F acting at the center of mass of a body causes
the bw to accelerate at 7.



is the Euler’s Equation for this link in frame {C} where the origin

is located at the centre of the mass.
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We now consider the problem of computing the torques that
correspond to a given trajectory of a manipulator. We assume that

we know the position, velocity and acceleration of the joints i.e.,

{6}, {6}, and {8}

are known. With this knowledge, and the knowledge of the
kinematics and inertia tensors and mass of the links, we can
calculate the joint torques required to cause the motion. To use
the following algorithm it is also know that % {w} = ° (@} = {0},
i.e. the base is fixed. '
The angular velocity and angular acceleration for a rotational

joint are given by

"Hwhig = LRI wY, + 6, (2,,) (6.31)

"Wy, = "R @), + PRI WY, x 6,,,1(2,,,) + 8, (2,,,}

(6.32)

The linear equation for each link frame origin in guch cases is
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FIGURE 6.4 A moment N is acting on a body, and the body is rotating
with velocity w and accelerating at w.

{r+1}

FIGURE 6.5 The force balance. including inertial forces, for a sin;le
manipulator link.
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given by

MUV e = PHIRICL@Y, x P + Hw); x (Hwy; x {P,,}) + {V}))

(6.34)

on the other hand, if the joint is prismatic, then one has to use

"Hwy,, = "R W), (6.33)
MV e = LRI (M@, x P+ {w) x (Hw), x P 1)+ {V}))
+2 "Ywy,,, x 4,2, + d.,,""2,} (6.35)

The acceleration of the centre of the link in either of the two

cases will be

Ve = M@y, x Py} + Hw); x (H{w); x {Py)) + T{¥},

(6.36)
The inertial force {F;} and torque {N;} will be given by
T{F} = w' {V} | (6.37)

Ny = Sy ey + ({w) x SI){w})

The effect of gravity on the links can be included quite easily by

setting %{Vv} =9%/{g} where g = 9.81. This fictitious upward
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acceleration causes exactly the same effect on the links as gravity

would. This does not introduce additional computational expense.

8.T T MANIP ION
THE STATE SPACE EQUATION

It is quite often convenient to express the dynamic equations

in the general form as

{1} = [M(8)1{6} + {V(8,8)} + {G(8)} (6.59)
nxl nxn nxl nxl
Where

[M(8)] is the nxn mass matrix

{V(8,8)} is an nx1 vector having coriolis and centrifugal terms
and {G(®)} is an nx1 vector of gravity terms.
For a two link manipulator shown in fig.6.6, these vectors and

matrices are

-
1,’m,+21,1,m,c,+1,2(m,+m,) 1,%m,+1,1,m,c,

(M(8)] =
B 1,2m+1,1,mc, 1,’m,
(6.60)
-m,1,1,8,6,%- 2m,1,1,s,6,6,
{v(e,8)} = (6.61)
m211lzszé12
2x1
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FIGURE 6.6 Two-link with point masses at distal end of links.



m,1,9¢,,+(m+m,) 1,gc,
(G(a)r = 4 (6.62)

m,1,9¢,,
2x1
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THE CONFIGURATION SPACE EQUATION

One can rewrite Eq. (6.59) in the form
[ coriolis coefficients

{1} = [M(8)]{8} + [B(8)1{8 8} + [C(8)]1{6%} + {G(8)} (6.63)

nxn nx1 nx(n-1) /2

where

{6 6}= [6,6,...6 .61 (6.64)
[C(8)]- centrifugal coefficients

{8%)= [6,%6,2...6 27 (6.65)
Eq. (6.63) gives a forﬁ in which parameters are only a function of

joint position. It shows that the dynamics is computation

intensive.
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Problem — Given {r}, find {®}, {6}, {6}.
Given the dynamics equations written in the closed form as in
Eq. (6.59), simulation requires solving the dynamic equation for

acceleration
{6} = [M){1-V(8,8)-G(Q)-F(8,6)} (6.115)

We may then apply any of the several known Numerical Integration
Schemes to integrate acceleration to compute future position and
velocities.
Given initial conditions of the manipulator, usually in the
form
{6(0)} = ,{8}
and
{6(0)} = {0.0}.
We numerically integrate Eq. (6.115) forward in time steps of size

Ot.

EULER INTEGRATION SCHEME

At first calculate
{6(t+ot)} = {6(t)} + {8(t))ot

{8 (t+at)} {8(t)} + {6(t)}ot + Yot2{8(t)} (6.117)



and then substitute these two {6(t+ot)} and {e(t+ot)} in Eq. (6.115)
to calculate {6(t+ot)}. In this way, the position, velocity, and

acceleration caused by a certain torque function can be calculated.



