CHAPTER 2

In the manipulations of Robotic manipulators, control is
applied on (a) forces and torques, etc. or (b) kinematic parameters
such as displacement, velocity, acceleration, etc. of the end
effector or the tool. Naturally, all of these have to be defined
with respect to some inertial coordinate system - UNIVERSE

COORDINATE SYSTEM which is a Cartesian frame.

2.2 DESCRIPTIONS : ITl RIENTAT AND FRAME

Once a coordinate system is established, we can locate any
point in the space with a 3x1 POSITION VECTOR. In this course, the
vector will be written with leading superscript which identifies

the frame. For example a vector P or {P} will be expressed as

*P or * {P}

In terms of the components we can write

A_E' A{P}" py




FIGURE 2.1 Vector relative to frame example.

ORIENTATION

The orientations of any of the axes of the system B are shown in

the [R] matrices.

[R] = |%5.94 9594 239, (2.3)

a[R] - 2.4

Please note that all the vectors are unit vectors. Therefore, their
magnitudes are equal to 1. The [R] has its elements, the direction

cosines. It is an ORTHONORMAL MATRIX and the following
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relationships apply

3R] = XRI" - LR]IT Q.7

fig

FIGURE 2.2 Locating an object in position and orientation.

DESCRIPTION OF A FRAME

A frame is described with respect to a REFERENCE FRAME by its [R]

matrix and the position vector of its origin.

AlT] - [ AR]: © P, orioml



Xy

FIGURE 2.3 Example of several frames.

Naturally, “p A ORIGIN will have 3 components along the each of

the axes of the reference frame U.

2.3 MAPPINGS: CHANGING DESCRIPTIONSF FRAME TO FRAME

A given point will have different position vector in different
frames. In Fig 2.4, frames {A} and {B} have same orientation i.e.,
the corresponding axes are parallel. 1In this case {B} is displaced
from {A} by a vector *P , ciem-

fig 2.4

~

X,

~

FIGURE 2.4 Translational mapping.



The unit vectors R, 95, and 2, will be equal in magnitude.

Therefore one can add vectors in system {A} and {B}.

A.I_).- BE+ AP

—B ORIG

AP} - B{P} + *{Py onic}

2.9

Here we have mapped ®{P} into *{P}.

fig

{B} {a}

FIGURE 2.5 Rotating the description of a vector.

Here we say that A{PB gy} defines this mapping. All the
information necessary to perform the change in description is

contained in this vector. A TRANSLATION VECTOR had sufficient



information. On the other hand, as we will see next, when the

ORIENTATION of two frames are different then we would need an
ADDITIONAL ROTATIONAL MATRIX to completely define the mapping.
MAPPINGS INVOLVING ROTATED FRAMES

Fig 2.5 shows two frames {A} and {B} where the origins of the two
systems coincide and there does exist an axis about which the
frames {A} can be rotated to make it coincident with the frame {B}.
It is also possible to rotate the frame {A} in three successive
rotations about %,, ¢,, and 2, respectively to make it coincident
with {B}. We will study these details later on. As shown in fig
2.5, we can write as columns, the direction cosines of &;, ¢;, and

2, to form a rotation matrix [R] as:

Xg Ys Aza

s[RI - (2.11)

- | "] - ARI" - [RI"

Suppose we are given ®{P} and we want to know *{P}. In compact

notation, the solution is



A{P} - 3R] *{P}

where

"‘Px - BiA- Bp
APy - B?A. BP
APz - BZA- Bp

(2.13)

2.12)

Please note that for this mapping, the origins of the two

ZA 28

systems were coincident. We should always remember the inverse
relationship
A Brp1- B
s[RI - RRI" - XRI" 2.10)
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MAPPIN

s[R] -

AlR] -

AR]T -

| Cos30
-Cos300

_Cos270

[ Cos330
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_Cos270

[0.866
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INVOLVIN
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Cos270

ENERAL FRAME

Cos90
Cos90

Cos0 |

Cos90

Cos90

Cos0 )

FIGURE 2.7 General transform of a vector.
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In fig 2.7, the frame {B} has different orientation as well as the
location of its origin is different from that of {(A}. We are given

the vector ®{P} and we would like to know *{P}. The formula is

A{P} - &IT] *{P}

(2.18)
4x1 4x4 4x1
[R] ' APBORIG]N [ ]
3%3 | 31| | P
- |__ L Cy-=t (2.18a)
[0] | 1! ]
| 1%3 | 1x1
fig
Zs
Za P
4 A
R4
N
Xs
';
A



Suppose for the figure shown we have the following values

-
r

(0866 -05 0 1

Rl - | 05 0866 O, *{P, ouent - 131

0 0 1] 4
3x3 3x1
T
2
P} - 3
e 1 -~
3x3 3x1
(0866 -05 0 | 1]
05 086 0 | 3
a1 =1 0 0 1 I 4
|0 0 0 | 1]
1x3 1x1
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A%[T] is made out of 4 sub matrices:
1) The [R] rotation matrix.

2) {Py iy} Vvector.

3) [0] 1 x 3 null matrix.

4) (1] 1 x 1 unit matrix.

Now we can multiply the submatrix in Eq. (2.18 a) and obtain

~

(0.866

Vv

AP} = A[R] (P} + AP, cuond - 1 5-23

7.00

The first term(vector {“X1}) on the right hand side is nothing but
projections of ®{P} along (R, - 9, - 2,) systen. Therefore the
matrix %[R] projects a vector in {B} parallel to the coordinate
axes of {A}.

The second term A{P } is already expressed in frame {A}.

B ORIGIN
Now, these two vectors can be added because they are expressed in

the same frame.

CONCLUSION

If the vector is expressed in a frame which is (a) oriented
differently, and (b) its origin also does not coincide with the

reference frame then one has to do two things:
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1) Project the vector parallel to the reference axes by pre-
multiplying it with [R] matrix.
2) Add the vector joining the two origins but these one also

expressed in the reference frame.

(2.19)

If we expand the lower submatrices, we would get

(11 = [0] *{P} + [1](1]
1x3 3x1  1x1 1x1
- [0] + [1]
1x1 1x1
1-1

2.4 OPERATORS: TRANSLATION TATIONS, TRANSFORMATION

The same mathematical forms which were used for mapping can
also be used for translation of points, or rotation of vectors or

both.
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FIGURE 2.9 Translation operator.

A translation moves a point in space a finite distance along a
given vector direction. 1In the fig 2.9, we would like to move a
point P, along the direction of the vector A{Q}. Since there is
going to be only translation and no rotation i.e., @ = 0°, we can

write the transformation matrix D as

(1 0 o0 | Q]

o 1 0 | q
De=10 0 1 o Q
o 0 0o | 1]
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where the position vector of Q is written in the fourth column.
The rotation matrix [R] is a unit matrix. The final position

vector {P,} is obtained as

A{Pz} = [DQ] A{P1}
4xX1 4x4 4x1

(2.25)

ROTATIONAL OPERATORS

A rotation matrix [R] will rotate a vector by certain angle 8
about certain axis in the three dimensional space. While operating

on a vector, it pre-multiplies it.

AP} - [RO)] AP} 2.27)

when 6 = 0°, [R] becomes a unit matrix with 1 along its diagonal

and 0 elsewhere. [R] rotated about z axis is written as

(Cosd  -Sind 0

[R,®] - | Sind Cos§ 0 (2.29)
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The z axis is represented by a direction

b o 1

We can have a general axis in space called ‘k’ axis and rotation

about this axis whose directions are given by

The corresponding rotation matrix is written as equation (2.80)

k kv0+cd Kk kvl —k,s0 k k,v8+k,s0
Rp(8) = |k kw0 + k80 kb vd+cf k kvd-k,s6]. (2.80)
k k,v0 —k, s6 k,k,v+k.s8 k k,v0+ch

Where cf = cos 6, s0 = sinf, v0 = 1 - cosd, and 4K = [k, k, k,]T.

vz
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The expressions for (R, ( 6 )] and [R, ( 8 )] are

R(@®] =|0 Cosé -Sin

0 Sinf Cosf ]

[(Cos§ 0 Sind

R®I-| 0 1 o0

_—SinO 0 Cos0_‘

EXAMPLE s
A
0 ) P
GIVEN: A{P} - {2} 30
0]

Find A{P,} which is obtained by rotating *{P,} about 2, axis by 30°.
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SOLUTION:
AR} - [R,(30] A{P}

(Cos30  -Sin30 0| [0

= | Sin30 Cos30 0 2

~1.000
AR} - | 1732

0.000

TRANSFORMATI PERATOR

The combined operations of rotation and a translation are done
using transformation operator [T] which has [R] and {Q} which are

rotational and translational components as its sub-matrices.

Rl | {Q}

01 | 1

AN IMPORTANT THEQOREM

The transform [T] which rotates by [R] and translates by {Q}
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is the same as the transform which describes a rotated frame by [R]

and translated by {Q}. N
; e
fig
A N
Ya 4 e
b\ 71307
1
!
6 |
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i
\& :
o A
Xa
[R,(30°) | oa
| ab
7] - |0
oo0o0o | 1

2.8 MORE ON REPRESENTATION OF ORIENTATION

The rotation matrices are special in that all columns are

mutually orthogonal which means their dot products with other are
equal to zero. Furthermore, the determinant is always equal to +1.
They are called proper orthonormal matrices. Proper orthonormal

matrices have determinant = +1, and the non proper have equal to
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Next question is, what or how many independent parameters are
there in 3x3 rotation matrices which has 9 elements. The answer
comes from Cayley’s formula for orthonormal matrices which states
that for every rotation matrix [R] there exists a skew-symmetric
matrix, [S], such that

[R] = [(I3] - [S)17" [[I3) + [S]) (2.56)

Where [I;] is an identity matrix and [S]) is given by

0 -S, s,
[S1-1S, 0 -S (2.57)
s, S, 0]

(Skew Symmetric)

One can see that ([S] in Equation (2.57) above has only three
independent parameters. If we see the Equation (2.56), we see that
[I;]) being an identity matrix is completely known; therefore, the
right hand side contains only three unknowns or three independent
parameters. It shows that the left hand side of this equation must
also contain only three independent parameters.

The other way would be to express [R] as three columns as

(Rl =[x ¥ 2]

where each of &, ¢, and 2 are unit vectors. Then we should also
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have the following equations of constraints:

=] =1
lg] =1
2] =1 (2.59)
g .9=0
£ .2=0
g .2=0

To obtain the 9 elements of [R], we should have 9 equations which
are subject to 6 equations of constraints. Therefore, there are
only 3 independent parameters.

One should also remember that the products of rotation

matrices are not commutative i.e.,

AR] ER] = B[R] A[R]
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EXAMPLE:

0.866  -0.5
GIVEN 4[R] - | 0.5  0.866
00 00
(10 00 00|
BIR] - [0.0 0.866 -0.5
00 05 0866
087 -043 025 |
ARI B[R] - |05 075 -0.43
(00 05 087
087 -05 0.0 |
}R] 5[R] - |0.43 075 -0.50
025 043 0.87 |

0.0

0.0

1.0

(2.62)

In view of the fact that one can represent [R] by three independent

parameters, there are representations which require only three

independent parameters and are discussed below:

1 X-Y-Z FIXED ANGLES

Here, we are given the Reference Frame {A} and we have to

specify the {B}.
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FIGURE 2.17 X-Y-Z fixed angles. Rotations are performed in the order
Rx(v), Ry(8), Rz{a).

We start with a frame coincident with {A} and rotate this
coincident but separate frame about various axes of {A}.
1) Rotate {B} about £, by an angle y.
2) Then rotate it about 9, by an angle B.
3) Finally, rotate it about 2, by an angle «a.

It should be noted here that all the rotations were performed
about the fixed or the Reference Axis. Representing the final

matrix as

s[R,(v.8,0]
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the relationship between the various individual and the final

matrix is written as

3[R, ,(7,8,0] = R (IR B]IR, ()]

In the equation above on the right hand side, the matrices have
been pre-multiplied i.e., the rotation about the Y axis was
performed after the X axis; so the rotation matrix corresponding to
the Y axis rotations are pre-multiplied. It is an IMPORTANT RULE.

Now we are in a position to write the complete matrices which are

ca -sa O g 0 s 1 0 0

Q[Rm('y,ﬁ,a)] - |sa ca O 0 1 0 0 ¢y -sy

23



cacfl casfsy-sacy casBcy+sasy

Q[Rm('y,ﬁ,a) - | sacf sasPBsy+cacy sasfcy-casy (2.64)
-sf cfsy cfcy
Iy Tp Ipa
=TIy Ip Iy (2.65)
r31 I.32 r33

If we want to determine o, £, and y from the matrices given in
equation (2.65) then we can use the following formulas in the GIVEN

SEQUENCE:

B = Atan2(—r31, rfl + r;l )
o - Atan2(r, /cB, 1, /cB) (2.66)
v = Atan2(r,,/cB, r,,/c3)

where Atan2(y,x) = tan”(y/x). Here signs of both x and y are used.

It is 4 quadrant arc tangent function.
Z-Y - X EULER ANGLES

This involves rotations about {B} of the system B as follows:
1) Start with a frame {B} coincident with {A}, and rotate about

2, by an angle as shown in fig 2.18.
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X3

FIGURE 2.18 2Z-Y-X Euler angles.

2) Then rotate about ¢, by an angle B.
3) Then rotate about £, by an angle y.

The final orientation matrix in this case will be

s[R,] = [R(@] [RB)] [R ()]
1 2 3

ca -sa 0 ¢ 0 sB 1 0 O
s[Ry] - |sa ca 0 0 1 0f [0 cy -sy ©(2.70)
0 0 1 -sf 0 cB 0 sy cy

cacf casfsy-sacy casfcy+sasy
sacfl sasfsy+cacy sasfBcy-casy
-sf3 cfsy chcy

(2.71)

Z-Y -ZEULER ANGLES

In this case, the final expression is
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cacfcy-sasy -cacfsy-sacy casf
s[R,,] = [sacBey+casy -sacBsy+cacy sasf
V -sBcy sBsy cB

2.72)

The formulas for extracting a, £, and y from the matrix on the

right hand side of equation (2.72) are

B = Atan2((rs5? + r3,?) "2, ry)

a Atan2(ry/sf , r,;/sh) (2.74)

vy = Atan2(r,,/sf , -r;,/sB)

EQUIVALENT ANGLE AXIS

Instead of three successive rotations in these three cases, it
is also possible to rotate about an axis in space, only once to

reach to the final orientation.

Eq(2.80)

Kk v0+ch Kk kb —k,s0 kk,v0+k,s
Rp(6) = | kok b+ k.0 kykd+cd kh,vb—k.s8).  (280)
kokub—k,s0 kk,vb+kys0 k.kv8+ch

Where cf = cos8, s6 = sin 6, v8 = 1 —cos 6, and 4K = [k, k, k.]T.

where cf = Cos 6, sf = Sin §, v = 1 - Cos @ and *R = [K K, K,1'.
If the matrix [R] is given and one wants to find out @ and K, then

one has to use the formulas
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0 - ACos[r” in T T 1] 2.81)

2
Iy — I
~ 1
- |r,-r
5img | T ™ (2.82)
Iy T

In Equation (2.81), 6 should lie between 0 and 180° which is

obvious from the Fig 2.19

fig

FIGURE 2.19 Equivalent angle-axis representation.

It would amount to a maximum of one complete rotation about the K

axis.

TRANSFORMATION OF FREE VECTORS

So far we have discussed only the transformation of position

vectors. However, there are other kinds of vectors such as
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velocity, force etc. These are transformed differently using only
the rotation matrices.
1) Two vectors are said to be equal if they have (a) same
dimensions, (b) same magnitude, and (c) same direction.
2) Two vectors are equivalent in certain capacity if each
produces the very same effect in this capacity.
3) Vectors which are not equal may produce equivalent effects.
4) A line vector is one which has dependence on line of action
besides having magnitude and direction. Force vector is an example.
5) A free vector is one which may be positioned anywhere in space
without loss or change of meaning provided that magnitude and
direction are preserved.

An example of this is a Moment Vector. Suppose we have a
moment vector in frame B denoted by B{N}. This vector in frame A

will be

A{N} - a[R] B{N} (2.93)

Similar relationships can be written about the velocity vector also

AV} = AIR] B{V} (2.94)
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