Faculty of Engineering and Applied Science Engi 9605 - Water and Wastewater Treatment

Test 2, Open Book Thursday, March 16, 2017, 10:30 - 11:45 p.m.

Instructor: Dr. C. A. Coles

There are 2 questions worth a total of 40 marks. Only non-programmable scientific calculators without text or graphics storage are permitted. Accuracy and showing all work are important.

Name:	Student ID:	

- 1) Complete the design of horizontal flow rectangular sedimentation basins that are 5.4 m wide and have chain and flight sludge removal systems and tube settlers. The maximum flow, Qmax = 0.8 m³/s, the overflow rate, $V_0 = 140$ m/d, and the temperature, T = 12°C. The hydraulic diameter of settling tubes is 65 mm, they are sloped at an angle of 60° with the horizontal, θ = 60°, have a height of 2.0 m, and the top of the settlers and to the top of the launders is 1.1 m.
 - a) How many basins will satisfy the mean horizontal approach velocity, V_H? (4 marks)
 - b) What is the basin length if the settlers occupy 75% of the surface area? (3 marks)
 - c) Double check the overflow for the basin dimensions selected. (2 marks)
 - d) Check that the Reynolds and Froude numbers are satisfied. (6 marks) 🦡
 - e) How many effluent launders will satisfy the weir loading rate? (3 marks)

(Total 18 marks)

$$W = 5.4m$$
 8mg = 0.8 m/s. $P_{tuber} = 0.065m = 65mm$ $V_0 = 140 \text{ m/s}$ $V_0 = 600$ $V_0 = 1200$ $V_0 = 12$

4)
$$V_{H} = \frac{Q_{max}}{A_{X}} = \frac{0.8 \text{ m}^{3}/\text{s}}{(2 \text{ basins})(5.4 \text{ m})(2m+1.1m)} = 0.01 \text{ m/s}.$$

$$\alpha = 4.78 \text{ basins}$$

$$5 \text{ basins}$$

use 5 basins,

b)
$$A_5 = \frac{Q}{V_0} = \frac{0.8 \, \text{m}^3 / \text{s} \cdot 60 \, \text{x} 60 \, \text{x} 60 \, \text{x} 24^5 / \text{d}}{140 \, \text{m} / \text{d} \cdot 1 \, \text{d}} = 493.7 \, \text{m}^2$$

Latter =
$$\frac{493.7 \, \text{m}^2}{(5 \, \text{basins})(5.4 \, \text{m})} = 18.28 \, \frac{1}{2} \, 18.3 \, \text{m}$$

$$L_{basin} = \frac{18.3 \, \text{m}}{6.75} = \frac{24.4 \, \text{m}}{3}$$

9)
$$V_0 = \frac{9}{45} = \frac{0.8 \, \text{m}^3/\text{s} \cdot 60 \times 60 \times 24 \, \text{s}}{18.3 \times 5.4 \, \text{m}} = 1399 \, \frac{1}{2} \, 140 \, \text{m}^3/\text{d}$$

d)
$$R_h = \frac{A_x}{P_w} = \frac{\pi r^2}{2\pi r} = \frac{(0.065/2)_m}{2} = 0.01625m$$

$$V_{fc} = \frac{8}{A \sin \theta} = \frac{0.8 \text{ m}^3/\text{s}}{(5 \text{ badins})(5.4 \text{ m} \times (8.3 \text{ m}) \sin 60^\circ)} = 0.00187 \text{ m/s}$$

$$T = 12^{\circ}C$$
. $P = 1.236 \times 10^{-6} \text{ m}^2/\text{s}$

Re =
$$\frac{V_{fc}R_h}{y}$$
 = $\frac{(0.00187 \text{ m/s})(0.01625 \text{ m})}{1.236 \times 10^{-6} \text{ m/s}}$ = 25.25 \angle 50 0,K.

$$F_{r} = \frac{\sqrt{fc^{2}}}{9 \text{ Rh}} = \frac{(0.00187 \text{ m/s})^{2}}{(9.81 \text{ m/s}^{2})(0.01635)} = 0.0000184$$

$$= (.84 \times 10^{-5} > 10^{-5})$$

$$= 0.0000184$$

$$WL = \frac{0.8 \,\text{m}^3/5 \cdot 60 \,\text{x} \,60 \,\text{x} \,24 \,\text{s/d}}{5 \,6 \,\text{ab'}, \, \text{n}_5} \left(\frac{3 \,\text{launders}}{6 \,\text{ab'}, \, \text{in}} \right) \left(\frac{3 \,\text{launders}}{6 \,\text{ab'}, \, \text{in}} \right) \left(\frac{3 \,\text{launders}}{6 \,\text{ab'}, \, \text{in}} \right) = 125.9 \, \frac{\text{m}^3}{\text{d} \cdot \text{m}}$$

$$= 125.9 \, \frac{\text{m}^3}{\text{d} \cdot \text{m}} \, 0. \, \text{K}.$$

- 2) Water with an initial uniform suspended solids (SS) concentration of 250 mg/L is tested for settling in a settling column. The concentrations of SS in the collected samples, in mg/L, are recorded below for their respective depths and times.
 - a) Draw the 40%, 50%, 60% and 70% isoconcentration lines.

(7 marks)

- b) At 80 minutes detention find the theoretical SS removal in %, and V_0 in m/day. (10 marks)
- c) What is the final theoretical concentration of SS in the effluent, in mg/L?

(2 marks) (Total 19 marks)

			(Total To mair
Time (min)	0.75 m depth	1.50 m depth	2.25 m depth
40	150 40	165 34	175 30
60	115 ៦4	150 40	160 36
80	90 64	125 50	145 42
100	70 72	95 62	120 52
120	50 80	75 7 0	100 60

$$R_{to} = 42\% + \underbrace{1.875}_{2.35} \left(50 - 42\right) + \underbrace{1.23}_{2.25} \left(60 - 50\right) \qquad 1 \text{ mm} = 0.03 \text{ m}$$
$$+ \underbrace{0.705}_{2.35} \left(70 - 60\right) + \underbrace{0.225}_{2.35} \left(100 - 70\right)$$

$$= 42 + 6.67 + 5.47 + 3.13 + 3$$

$$= 60.27\%$$

$$V_0 = \frac{1}{L} = \frac{2.25 \text{m}}{80 \text{min}} \times \frac{60 \times 24}{4} \text{min}$$

= $\frac{40.5 \text{ m/d}}{4}$.