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St. John's Harbour 
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Topic 1: Introduction to Ship Structures 
 

 

The course is intended to develop the student’s knowledge of ship structures. The 

focus is on various types of intact structural behavior, building upon concepts from 

mechanics of materials. The course project will involve the design, assessment, 

drawing and reporting on the mid-ship scantlings (hull girder design) of a large 

vessel. The follow-on course (6003) will move from the consideration of intact 

behavior to the mechanics of structural failure.  

 

 
Web Frame under Deck  

 

 
hand drawn sketch 

 

One of the aims of the course is for the students to develop the ability to make an 

educated guess. Such guesses are not wild or random. Educated guesses are based 

on sound reasoning, careful approximation and simplification of the problem. In 

most cases the 'guess' starts by forming an idea of the problem in its essential form, 

or in 'bounding' forms. Basic laws of mechanics are considered to determine what 

Cruise Ship Structure 
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fundamental principle might govern the outcome. Most problems are governed by 

simple conservation laws, such as of forces, moments, momentum and/or energy.     

 

A related aim of the project is for the students to develop the ability to sketch the 

problem at hand, by hand and clearly. Sketching  is a form of symbolic 

communication, no less valuable than the alphabet or algebra.   

 

Background 
 

Humans have been constructing structures for a long time. A structure is a tool for 

carrying (carrying what is in or on the structure). Ship structures have evolved like 

all other types of structures (buildings, aircraft, bridges ...). Design was once purely 

a craft. Design is evolving as we understand more about the structure itself and the 

environment that we subject it to.  

 

Traditional Design  
 

 built by tradition (prior example) 

 changes based primarily on experience (some analysis) 

 essentially a builders “Craft” 

 QA by proof test and use 

 

 
Gondolas in Venice 

 

 

Engineering Design 
 

 incorporates analysis based on math/physics 

 common designs are codified (building code, class rules..) 

 new designs should follow the “Engineering Method” 
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early Finnish icebreaker (public domain - Wikipedia) 

 

 

design, analysis, construction and regulation are separate specialties 

design practice is evolving: In the 1950 tabulated requirements were found in Class 

Rules. By the 70s all codes had changed to include prescriptive algebra. New trend 

are towards "LRFD - load and resistance factored design", "risk based design" and 

"goal based design". Current practice in large (novel) projects make extensive use of 

"scenario based" design, with HAZIDs (hazard identification and mitigation).  

 

The future of design will be "design by simulation" in which the many interacting 

process and systems will be simulated numerically. In some ways this will 

represent a return to the idea of proving a design by a "proof test", except it will be 

a numerical proof test and will simulate the life of the design.   

 

 

Purpose of Ship Structures 
 

The structure of a ship or ocean platform has 3 principal functions:  

 Strength (resist weight, environmental forces – waves + ) 

 Stiffness (resist deflections – allow ship/equipment to function) 

 Water tight integrity (stay floating) 
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Warship (public domain - Wikipedia)    

 

  
Bulk Carrier FLARE (from TSB report) 

 

There are two other important functions 

 provide subdivision (tolerance to damage of 1,3 above) 

 support payloads  
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Shipbreaking on the beach at Chittagong   

(Naquib Hossain - Wikipedia) 

 

These functions are all interrelated, but should be considered somewhat separately.  

 

Structural Arrangement 
 

The particular arrangement of the structure is done to suit a variety of demands; 

 Hull is shaped (reduce resistance, reduce motions, reduce ice forces, increase 

ice forces, reduce noise) 

 holds are arranged for holding/loading cargo 

 holds are arranged for holding/installing engines 

 superstructure is arranged for accommodation/navigation 

 all structure is arranged for build-ability/maintainability 

 all structure is arranged for safety 

 all structure is arranged for low cost 

 

 
Cruise ship Lifeboat 
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Types of Structural Work 
 

Ship structural specialists are involved in a variety of work; 

 Design 

 Analysis 

 Construction 

 Maintenance 

 Repair 

 Regulation 

  

While almost all Naval Architects get involved in structural issues, as with most 

professions, a few focus on the area and tend to be involved in any advanced work. 

This course aims to have you develop your ‘feel’ as well as your knowledge of 

structures. In other words, you should work at developing you “Engineering 

Judgment” in the area of ship structures.  

 

Structural Behavior 
 

Ship structural behavior, as with all structural behavior is essentially very simple. 

Structures are an assemblage of parts. This distinguishes them from objects. A 

beam or plate is a structural element, but only a collection of structural elements is 

called a structure. The theory of structures builds upon the field of ‘mechanics of 

materials’ (also called mechanics of solids, or strength of materials), by considering 

the interactions and combined behaviors of collections of structural components. So, 

much of this course will focus on techniques for understanding collections of 

structural elements. We will also review and expand, somewhat, on the mechanics 

of individual elements.  

 

 



E5003 – Ship Structures I  8  
© C.G.Daley   
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Levels of Structure 

 
As a structure, a ship is an assemblage of components. At the largest scale a ship is 

a simple beam, carrying weight and supported by buoyancy.  The behavior or the 

whole ship as a single beam is referred to as the behavior of the primary structure.   
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The hull girder is referred to as the primary structure. The strength and stiffness of 

the hull girder depend on the properties of the cross sections of the ship. The key 

section is the midship section.  

 

Within the hull, as integral components of the hull, are large structural components 

that are themselves made of individual structural members, and yet act as 

individual systems. These are called secondary structures. For example, the whole 

double bottom, between bulkheads, is a unit that acts as a sandwich panel, 

behaving somewhat like a plate.     

 

Locally a ship is comprised of frames and plate. These are called tertiary structures. 

The tertiary structure are individual structural members.  

 

Ships are a class of structures called "semi-monocoque".  In a pure monocoque, all 

the strength comes from the outer shell ("coque" in french). To contrast, in "skin-on-

frame" construction, the loads are all borne by a structure of framing under the 

skin. In ships, the skin is structurally integral with the framing which supports it, 

with the skin providing a substantial portion of the overall strength.  

 

  
Newton's 3rd Law: 

action = reaction 

 

All the various parts and levels of a ship structure interact. Ships are "all-welded" 

structures, meaning that it is all one single, complex, solid elastic body. The main 

thing that structures (and all parts of structures)  do is “push back”. i.e. across any 

interface (across every patch of every plane, everywhere in the universe, always!) 

the force acts in both ways. This powerful idea is the key to understanding what 

happens in a structure.  
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Structural Design  
 

 
 

 

The process of ship structural design varies depending on the specific issues. 

Structural design occurs after the mission is set and a general arrangement is 

determined. The general arrangement allows us to determine both the 

environmental loads and the distribution of hull/outfit/cargo weights. The 

establishment of scantlings (structural dimensions) is iterative. We assume that a 

preliminary set of dimensions is settled upon from experience or by other choice. 

The loads will cause a set of responses (stresses, deflections). The response criteria 

are then compared to the responses. For any inadequacies we modify the structural 

dimensions and repeat the response analysis. When all responses are satisfactory, 

we are finished.  

 

In cases where we wish to satisfy additional constraints (cost, performance..) we add 

checks for these items after we have checked the structural response. Again we loop 

until we have met the constraints, and reached optimal values for some measure.  
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As stated above, the structural design can only occur after the overall vessel concept 

and arrangement is set, which is done during the preliminary design stage. The 

structural design itself is a process that is comparable to the overall design. Just as 

the vessels has a mission and a concept to satisfy that mission, so too does the 

structure have a mission and concept to satisfy the mission. Prior to deciding on the 

structural sizes (scantlings) , the designer must decide on the overall structural 

concept and arrangement. In rule based design (Classification Society rules), the 

loads and response criteria have been combined into standard scantling 

requirements formulae. The user can use these formulae to determine minimum 

dimensions for members and components.  There can then be the need to check 

additional criteria (e.g buckling, alternate loads). When this is complete the user 

has a complete structural design, but not yet a final detailed design. The final 

structural drawings also include detailed design features (e.g. bracket and weld 

specifications).  The image at left is taken from a structural drawing of a web frame 

in an offshore supply vessel.  
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adapted for illustration from a design by Rolls Royce Marine 

 

Load Types 
 

We will define four general types of structural loads.  

Static Loads (e.g. fixed weights) 

Low Frequency Dynamic Loads (e.g. quasi static load, wave loads) 

High Frequency Dynamic Loads (e.g. vibrations) 

Impact Loads (e.g., blast, collisions) 

 

With both static and quasi-static loads, we do not need to take inertial or rate 

effects into account in the structural response. With high  frequency loads we need 

to consider structural vibrations which includes inertial effects and damping. For 

impact loads, we have both transient inertial effects and rate effects in material 

behavior. It is important to distinguish between loads affecting vessel rigid body 

motions and elastic structural response. Wave forces may cause the vessel as a 

whole to respond with inertial effects (heaving motions), but will seldom cause 

anything but quasi-static response of the structure. The important determinant is 

the relative frequency of the load and response. Local structure will respond 

elastically at frequencies in the 100hz to 3000hz range. The hull girder will flex at 

around the 1 hz rate. The vessel will heave and roll at around the 0.1 hz range. 

(large vessels/structures will respond more slowly).   
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launch of MEXOIL, by John N. Teunisson, 14 February1918 (wikipedia) 

 

In this course we will examine the structural response to quasi-static loads. The 

hull girder is sized to resist the combination of self weights and wave forces.  
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Topic 1: Problems 
 

1.1 Longitudinal strength is a primary concern during the design of a ship. Describe 

the steps in the ship design process (in general terms) that must occur prior to 

consideration of the longitudinal strength.  

 

1.2  What is the difference between “low frequency dynamic” and “high frequency 

dynamic” loads? Give examples.  

 

1.3 Describe the types of loads that you would be concerned with during the launch 

of a vessel on a slipway.   

 

1.4 Loads on ships 

The following is a table of load types. Identify each load as static, quasi-static, 

dynamic or transient. Place a check mark  to indicate which categories apply to 

each load type. If more than one type applies, explain why in the comments column. 

 

 

LOAD 

static quasi-

static 

dynamic transient comments 

Dry cargo      

Liquid cargo      

Engine      

Propeller      

Ice      

Waves      

Other: ______      

Other:______      

 

1.5  In preliminary design, when can the preliminary structural calculations be 

made?  

 

1.6 List 5 purposes of structure in a ship.  

 

1.7 When is a load considered to be quasi-static?  
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Topic 2: Ship Structural Features 
 

 
lifeboat on the Battleship Texas 

 

Introduction 
In this Chapter we will  

Name and describe ships structural components.  

Discuss some structural features and challenges for various vessels, 

~~~~~~ 

Boats are made from a variety of materials, including wood, fiberglass, 

composites, aluminum, steel and cement. Ships are built mainly from steel. In this 

Chapter we will name and discuss the main structural features of steel ships. Ships 

are much longer than they are wide or deep. They are built this way in order to 

minimize resistance (fuel consumption), and yet maintain adequate stability and 

seaworthiness. This geometry results in the ship being a girder (a beam built from 

compound parts). The figures below show sketches of the structural details of the 

midship section of a bulk carrier.  
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Figure 1. 

 

This type of vessel is very common, and has many problems. Single side shell 

vessels are being replaced with double hull vessels. The FLARE had this type of 

construction.   
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Figure 2. Bow of Bulk Carrier FLARE 

 (from TSB report)  

 

Figure 3 shows a 3D representation of the same x-section as show in Figure 1.  
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Figure 3. 

 

 
Figure 4 Rhino Sketch of section of longitudinally framed double hull Container 

vessel. 

 

 

Ship Structural Photos 
 

 
Terra Nova FPSO – Floating Production, Storage and Offloading vessel 

(from wikipedia) 
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Terra Nova Hull FramingTerra Nova Structural Connection Details 
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Terra Nova Stringer with web stiffener bracket 

 

 

 
Terra Nova Stringer with web stiffener bracket 
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Terra Nova Longitudinal angle frames         

 
Transverse flat bar frames through stringer 
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Terra Nova flat bar frames 

 



E5003 – Ship Structures I  24  
© C.G.Daley   
 

 
Terra Nova Flare tower 
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Terry Fox – Icebreaker 

 

 
Bow framing in Terry Fox (photo by R. Frederking) 

 

The Terry Fox is ~7000 tons displacement and capable of ramming thick old ice. It 

has never been damaged.  
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Bow of Supply Boat 

 

 
Reduta Ordona          (Photo credit: Andrew Kendrick). 
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Local ice damage CPF superstructure plating 
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Topic 2: Problems 

 

2.1 Read the SSC Case Study V and name all the parts of the Rhino sketch shown 

below.  

 
 2.2 What was the basic cause of the “Recurring Failure of Side Longitudinal” in the 

SSC report?   

 

2.3 Sketch a X-section of a ship at mid-ships and label all features/elements.  

 

2.4 Sketch, free hand, the structure in the double bottom of a ship. Keep it neat and 

label the elements 
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Topic 3: Material Behavior 
 

 
plastic frame response to ice load test 

 

Introduction 
In this Chapter we will  

outline the material behavior models that are necessary to the analysis of 

structures.  

 

 

Hooke's Law 
 

Hooke's law is a very simple idea. It just states that there is a linear relationship 

between force  and deflection  in an elastic body; 

 

 
 
 where k is the 'spring constant' or the 'stiffness' 

 

For a uni-axial state of stress we can also write Hooke's law in terms of stress 

( normalized force) and strain ( non-dimensional deflection); 

 

 
 

where E  is Young's Modulus.  
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This law may seem to be too simple to deserve the term 'law'. However, this idea 

was not easily found. The world, especially in the time of Hooke and before, was so 

full of variability, inaccuracy and non-linearity that this idea was not obvious. Many 

things were made from natural materials (stone and wood) and the idea of linear 

behavior was radical. Hooke was a contemporary, and rival, of Newton. He 

developed a coil spring for use in a pocket watch. In 1678 he published a discussion 

of the behavior of his spring, saying: "ut tensio, sic vis" meaning "as the extension, 
so the force". Hooke worked in many fields (architecture, astronomy, human 

memory, microscopy, palaeontology), but it is only in mechanics that his name is 

associated with a fundamental law.  

 

How important is Hooke's contribution? For structural analysis it is the 

fundamental idea, as important to structural analysis as is Newton's 2nd law 

 to the field of dynamics.  
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Hooke's law is important because linearity of behavior permits the use of 

superposition. And only with the idea of superposition can we divide problems up 

into parts, solve the parts and add them back together to get a total solution. The 

whole field of structural analysis depends on Hooke's law.  

 

Hooke's law can be expanded to describe 2D and 3D behavior. Consider a 2D sample 

of elastic material. When a force is applied in one direction (x) the material 

stretches in that direction and contracts in the lateral direction(y). So for a stress in 

the x direction we get strains in x and y. This is Hooke's law in 2D for the case of 

uni-axial stress; 
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When we consider a general state of stress, comprised of a combination of x and y 

direction stresses , as well as shear stress we can write the relationship 

amoung the stresses and strains Hooke's law in 2D for the general case;  

 

 
 

or equivalently; 

 

 
 

The above equations are used to describe isotropic materials (materials that are 

similar in all directions, such as steel), which have the same value of E and n in all 

directions.  

Note: Anisotropic materials, such as wood and fiberglass have different values of E 

for each axis. Hooke's laws for anisotropic materials have many more terms.  

 

Hooke's law can be expressed in 3D as well, but 2D is sufficient for the problems 

that we will examine.    
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Consider a small element of material with normal and shear stresses on vertical 

and horizontal planes. We refer to these stresses as engineering stresses,  

Now consider what the stresses would be on any other plane, so one that is rotated 

by the angle  from the vertical (from the plane for  stress).  Mohr showed that 

the stresses on all planes, when plotted, will form a circle in  vs.  coordinates.      

 

The stresses on the vertical plane,  and , are plotted on the Mohr's circle (point 

A). The stresses on the horizontal plane,  and , are plotted at point B. These 

two planes are physically 90 degrees from each other, but are 180 degrees apart on 

the Mohr’s circle.  

 

 
state of stress in 2D 

 

The line joining A, B is a baseline. To find the stresses on a cut plane at angle  

from the vertical plane (the plane of A), we must move 2 from the 'A' direction 

around the Mohr’s circle. This lands us at point C, where the stresses are ,  and 

. 
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The general equations to find the stresses on a plane at angle  from the plane of   

are; 

 

 
 

 
 

 

 

 
principal stresses 

 

 

You can see from the drawing of Mohr's circle, that the largest value of  occurs 

where  is zero. The largest and smallest values of  are called  and . They are 

sufficient to define the circle, and are called the principal stresses.  

 



E5003 – Ship Structures I  35  
© C.G.Daley   
 

We do not need to solve for 1 and 2 graphically. We can use the following 

equations: 

 

 
 

  

or 

 
 

 
 

 
large strain behaviors 
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At low strains steel is a linear elastic material. However, when steel is strained to 

large levels, the linear behaviour ends. Typical ship steels will follow a stress-strain 

curve as shown at the left. After yielding the stress plateaus while the strains 

increase significantly. At larger strains the stress begins to rise again, in a 

phenomenon called 'strain hardening'. At even larger strains the material starts to 

'neck' and eventually ruptures. Typical yield stresses are in the range 225 to 400 

MPa. Typical ultimate stresses are in the 350 to 550 MPa range.  

The initial slope is the Young's modulus which is about 200,000 MPa (200 GPa). So 

the strain at yield is about 1200 to 2000 x10-6 strain (-strain). Rupture occurs at 

around 25% strain (300,000 -strain). 

 

 

 
 

yield criteria and equivalent stresses  



E5003 – Ship Structures I  37  
© C.G.Daley   
 

 

In ships structures, made almost entirely of plate steel, most stress states are 

essentially biaxial. In this case we need to have a criteria for any 2D state of stress.  

 

The 2D von Mises criteria is plotted at left. The curve is normally represented in 

terms of principal stresses and forms an oval. The oval crosses the axes ay the 

uniaxial yield stress . The equation for the yield condition is; 

 

 
 

 The criteria can also be expresses in terms of engineering stresses; 

 

 
 

To show whether a general 2D stress is at yield, the concept of an equivalent stress 

is used (the von-mises equivalent stress). The equivalent stress is a uniaxial stress 

that represents the same % of yield as the biaxial stress. In this way any 2 states of 

stress can be compared.  The equivalent stress is; 

 

 
or 

 
 

We will make use of equivalent stresses in the ANSYS labs. 
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Topic 3: Problems 
 

3.1 A column is made of steel pipe with OD of 8", and ID of 7". It is 8 feet tall. The 

column supports a weight of 300kips (300,000 lb).  How much does the column 

shorten under load? 

(E for steel is 29,000,000 psi)  (Ans: 0.843”) 

 

3.2  A 2D state of stress   is (200, -20, 45) MPa.  What are the strains 

? (Ans: 1030,-400,585 e) 

 

 
 

3.3  For a 2D state of stress   of (180, -25, 40) MPa, plot the Mohr's circle.  

What are the principal stresses  ?  (Ans: 187.5,-32.5 MPa) 

 
 

3.4  For a 2D state of stress   of (100, -100, 60) MPa, what is the von-mises 

equivalent stresses  ?  (Ans: 202 MPa) 

 
 

3.5  For a 2D state of stress   of (150, 100, 30) MPa, what is the von-mises 

equivalent stresses  ?  (Ans: 142 MPa) 
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3.6 For a small cube of material with   what is the maximum 

shear on any plane?  (Ans: 50 MPa) 
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PART 2 : Longitudinal Strength 

 
St. John's Harbour 
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Topic 4: Longitudinal Strength: Buoyancy & Weight 

 

 
Pompei 

Introduction 

In this Chapter we will  

Discuss Still water bending moments, bonjean curves, Prohaska’s method and a 

similar method for non-parallel midbodys  

~~~~~~~~~~~~~~~~~~~~ 

Overview 

 

Structural design starts from: 

 

Principal Dimensions -      L,B,T 

Hull Form -        CB, CWP, CM  

General Arrangement – decks and bulkheads 

 

Which is called preliminary design: 
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The first strength consideration is the longitudinal strength of the hull girder. The 

hull girder feels vertical forces due to weight and buoyancy. For any floating body 

the total weight must equal the total buoyancy, and both forces must act along the 

same line of action. However, at each location along the ship, the weight will not 

normally equal the buoyancy. 

 

The weights are set by the combination of lightship and cargo weights. The locations 

of the weights are fixed (more or less). The buoyancy forces are determined by the 

shape of the hull and the location of the vessel in the water (draft and trim). The net 

buoyancy will adjust itself until is exactly counteracts the net weight force. However, 

this does not mean that each part of the vessel has a balance of weight and 

buoyancy. Local segments of the vessel may have more or less weight than the local 

buoyancy. The difference will be made up by a transfer of shear forces along the 

vessel.   
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Bending Moment Calculations 

 

The ‘design’ bending moment is the combination of Stillwater bending and wave 

bending. To calculate these values we will make the following assumptions; 

Ship is a beam 

Small deflection theory 

Response is quasi-static 

Lateral loading can be superimposed  

 

~~~~~~~~ 

 

Still Water Bending Moment (SWBM) 

 

The still water bending moment is calculated from the effect of the weights and 

buoyancy in calm water. The buoyancy force is a line load (e.g. kN/m). The local 

buoyancy per meter is found from the x-sectional area of the hull at each location. 

The x-sectional area depends on the local draft and are found from the ‘bonjean’ 

curves. 
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Bonjean Curves – Calculating the Buoyancy Distribution 

 

Bonjean curves show the relationship between local draft and submerged cross-

sectional area. There is one bonjean curve for each station. There are typically 21 

stations from the FP to the AP, with 0 being the FP. This divides the Lbp into 20 

segments.  

 

 
 

 

At each station we can draw a bonjean curve of the x-section area; 

 

 

 
 

 

Bonjeans are drawn on the profile of the vessel. With these curves, we can find the 

distribution of buoyancy for any waterline (any draft, any trim). 

 

 
 

 

For hydrostatic calculations we need to know the distribution of buoyancy along the 

ship. We need to be able to find this for every possible draft/trim. If we had a wall 

sided vessel, it would be relatively easy to solve for the draft/trim (as in Assignment 

#1). With shaped hulls, there is a non-linear relationship between buoyancy and 

position. We use bonjean curves to find the buoyancies as follows.  
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For the typical 21 station ship, we divide the ship into 21 slices, each extending fore 

and aft of its station. Using the bonjean curve for each station we calculate the total 

displacement at our draft/trim; 

 

 
 

 
 

For example, the displacement for station 3 is; 

 

20
33

BPL
A     [m3] 

 

The buoyant line load for station 3 is; 

 

g 33    [N/m] 

 

(assuming that area is in m2, g=9.81 m/s2 and  = 1025 kg/m3) 

 

The above will provide a way of calculating the buoyant forces at each station. We 

will now discuss the weights. 

 

 

 

 

 

Calculating the Weight Distribution 
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We will discuss three methods for determining weighs.  

 

If the weight distribution is known (even preliminarily), we use them directly. The 

steps to follow are; 

Calculate the weight at each station (+- half station) 

(optionally) find the c.g. of weights for each segment 

(optionally) place the weights at the c.g.  

 

 
 

~~~~~~~ 

If the weight distribution is unknown and we need to estimate the distribution, we 

can use the Prohaska method. Prohaska proposed a method for a ship with parallel 

middle body (i.e. most cargo vessels). The weight distribution is a trapezoid on top of 

a uniform distribution, as follows; 

 

 
The weights are distributed according to the pattern above. With the average 

weight/meter of the hull : 
L

W
W hull  the values of a and b are ; 

 

 

W

a

 W

b

 
Tankers .75 1.125 

Full Cargo Ships .55 1.225 

Fine Cargo Ships .45 1.275 

Large Passenger Ships .30 1.35 

 Note that the values of a and b are related, so that the average is W . This gives 

W

a

W

b

2
5.1  .  

To move the position of the center of weight (the lcg) the fore and aft ends of the load 

diagram are adjusted by equal (and opposite) amounts.  
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54

72Lxlcg    or,           
7

54
2L

lcg
x


     

 

~~~~~~ 

If the weight distribution is unknown and we have a vessel without a parallel middle 

body (i.e. most sail yachts), we need a smoother distribution. The method below uses 

a parabolic distribution on top of a uniform distribution. The two parts each have 

half the weight.    

 

 

 
 

The equation for the weight is; 

 

))1
2

(1(
4

3

2

2
L

x
W

W
W

 
 

To shift the total center of weight by ‘x’ we shift the c.g. of the parabola by 2x. This is 

done by ‘shearing’ the curve, so that the top center, ‘D’, shifts by 5x. All other points 

shift proportionally. 
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Topic 4: Problems 

 
4.1.  For the three station profiles shown below, draw the bonjean curves in the space 

provided.  

 

 
4.2.  For a vessel with 4 stations, the bonjean curves are given at the 3 half stations. Lbp is 

60m.  

for the vessel to float level (no trim), at a 4.5 m draft, where is the C.G.? (Ans: ) 

What would the Prohaska distribution of weight be to achieve this? (plot) 

If the C.G is at midships, and the draft (at midships) is 4.5 m, what is the trim? 

(Ans: ) 
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4.3.  For the vessel body plan shown below (left), sketch the corresponding bonjean curves (on 

the right).  

 

 
4.4.  For the bonjean shown below (right), sketch the corresponding vessel body plan curve 

(on the left).  
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4.5.  Bonjean Curves  The following figure shows 5 potential Bonjean curves. Some of them 

are impossible. Identify the curves that can not be Bonjean curves and explain why. For the 

feasible Bonjeans, sketch the x-section that the Bonjean describes.  

 

 

 
 

 

 
4.6.  For the two ship stations shown below, sketch the corresponding bonjean curves on the 

grid below.  

 

 145 m

20 m

12 m

20 m

2
 

    (a)     (b) 

 

 

0
0 150 20010050

2

4

10

12

8

6

Area [m2]

z [m]
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4.7.  You are supervising a preliminary ship design project. You have asked one of your team 

to produce a net load (weight-buoyancy) diagram, so that bending moments can be 

calculated. The diagram you are given is ; 

 

 AP

20

0

-20
¼ FP

Net Load Curve

¾  
 

why is this diagram impossible? Justify your answer. (hint: use SFD and/or BMD) 

 
4.8.  For the three station profiles shown below, sketch the corresponding bonjean curves 
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Topic 5: Longitudinal Strength: Murray’s Method 
 

 
Battleship TEXAS 

Introduction 

In this chapter we will  

Discuss Murray’s Method to estimate still water bending moments  

~~~~~~~~~~~~~~~~~~~~ 

Murray’s Method 

 

Murray’s method is based on the idea that forces and moments in a ship are self-

balancing (no net force or moment is transferred to the world). Any set of weight and 

buoyancy forces are in balance.  

 

      
 

Also, for any cut at x, the moment at the cut can be determined in two ways; 

 

443355

2211)(

LyLyLy

LyLyxBM





 

 

Murray applied this idea to a ship: 
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where  

ff,fa are the distances from the  to the centers of weight (fore and aft) 

gf,ga are the distances from the  to the centers of buoyancy (fore and aft) 

 

The bending moment at midships is; 

 

          aaaa gfW   

or 
          

ffff gfW   

 

These are two ‘estimates’ of the maximum bending moment. We can combine the 

two, and increase our accuracy, by taking the average of the two; 

 

            ffaaffaa ggfWfW 
2

1

2

1
 

         BW BMBM   

          weight - buoyancy 

To find the buoyancy part, Murray suggested  

 

  xggBM ffaaB 
2

1

2

1

 
where  x  =  average moment arm 

 

 

Murray suggested a set of values for x , as a function of the ship length, block 

coefficient and the ratio of draft to length; 

 
)( bCaLx B   

where 
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T/L a b 

.03 .209 .03 

.04 .199 .041 

.05 .189 .052 

.06 .179 .063 

  

This table for a and b can be represented adequately by the equation; 

LTa /239.   
003./1.1.  LTb  

 

 

Example using Murray’s Method 

 

Ship: Tanker L=278m, B=37m, CB=0.8 

 

Assume wave bending moment is; 

WBMsag = 583800 t-m 

WBMhog = 520440 t-m 

 

The vessel weights, and weight bending moments are as follows; 

ITEM Weigh t lcg Mom en t

( t) ( m ) ( t-m )

Fwd

   ca r go 6 2 0 0 0 4 0 2 4 8 0 0 0 0

   fu el & wa ter 5 9 0 1 1 6 6 8 4 4 0

   s teel 1 2 0 0 0 55 .6 6 6 7 2 0 0

3 ,215 ,640    

Aft

   ca r go 4 9 8 0 0 3 7 1 8 4 2 6 0 0

   m ach in er y 3 4 0 0 1 2 5 4 2 5 0 0 0

   ou tfit 9 0 0 1 2 0 1 0 8 0 0 0

   s teel 1 2 0 0 0 55 .6 6 6 7 2 0 0

 1 4 0 6 9 0 t 3 ,042 ,800    

BMw  = 3 ,1 2 9 ,2 2 0  
 

 

 

To find the buoyancy moment we need the draft; 

 
 TBLCW B  
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025.1372788.0

140690









BLC
T

B  
                     68.16   m 

 

06.0
278

68.16


L

T

 
 

Murray’s table gives; 

 

a=0.179, b=0.063 

 

32.57)063.8.0179(.278 x  m 

 

xBM B 
2

1

 

         428,032,432.57140690
2

1
  t-m 

 

SWBM = BMW-BMB 

                  hog   sag 
             428,032,4220,129,3   

             145,903  t-m  (- is sag) 

 

we need to add the wave bending moment in sag  

 

Total BM = 903,145 + 583,800 

                 = 1,486,945  t-m  (sag) 

 

Note that in this case the ship will never get in the hogging condition, because the 

SWBM is so large.   
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Topic 5: Problems 

 
5.1.  Longitudinal strength is a primary concern during the design of a ship. Briefly explain the 

idea behind Murray’s Method.    

 
5.2.  There is a ‘rectangular’ shaped block of wood, as shown in the image below.    The block 

weighs 200 N and has uniform density. It is 1 m long and 0.20 m wide. It is 20 cm thick and 

is floating in fresh water.  

 

 
draw the shear force and bending moment diagrams for the block.  

 

Now consider the addition of a small 50 N weight on the top of the block, at a 

distance 2/3m from one end. (hint - a right triangle has its centroid at 2/3 of its 

length)  

 

 
After the block settles to an equilibrium position -   

Draw the bending moment and shear force diagrams   

What is the max. bending stress on the transverse plane at the middle of the block (ie at 0.5 m from the 

end)?   

 
5.3.  There is a ‘diamond’ shaped block of wood, as shown in the image below. The block 

weighs 5.4 kg. and has uniform density. It is 60 cm long and 30 cm wide. It is 12 cm thick 

and is floating in fresh water. Resting on the block are 2 weights, each small blocks of steel 

weighing 1 kg. They are symmetrically placed and are 55cm apart.  
What is the midship bending moment in units of N-cm ?   

What is the maximum bending stress in the wooden block?   
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Draw the bonjean curve for a cross section of the wooden block at a point 15cm from the end. (show actual 

units).    

What is the block coefficient for the block?  

 

 
ANS: a) 171.5 N-cm (hog)  b) 23.8 MPa  c) Straight and then vertical  d) 0.5 

 
5.4.  Consider a 100m vessel resting in sheltered fresh waters (see below). The CG of all 

weights fwd of midships is 23m fwd of midships (ff=23m). The CG of all weights aft of 

midships is 25m aft of midships (fa=25m).  The weights fwd and aft are 4200 and 4600 t 

respectively. Two bonjean curves are given. Assume each refers to the average x-section area 

for 50m of ship (fore and aft). The (fore and aft) buoyancy forces act at the bonjean 

locations, which are 18m fwd and 20 aft (of midships).  The buoyancy force aft is 4650 t.  

 

 
Using the bonjeans, find 

The vessel drafts at the two bonjeans.  

The buoyancy force fwd. 

The still-water bending moment at midships 
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5.5.  Murray's Method Consider a 100m long vessel resting in sheltered waters. The CG of 

all weights fwd of midships is 20m fwd of midships (ff=20m). The CG of all weights aft of 

midships is 25m aft of midships (fa=25m).   

- Describe how you would use Murray’s Method to determine the still water bending 

moment for this vessel. 

- What other info, if any do you need? 

Note: you don’t need to remember the specific values for terms suggested by 

Murray. 

 
5.6.  Hull girder strength The hull girder can be viewed as a beam. When floating in still 

water, is the beam statically determinate or statically indeterminate? Provide reasons for your 

answer.  

 
5.7.  You see below a sketch of a ship that is 200 m long. The displacement is made up of the 

lightship plus the weight of cargo in two holds. The ship has stranded itself on a submerged 

rock. Draw the various curves of load and response for the vessel (weight, buoyancy, net 

load, shear, moment, slope and deflection) that are compatible with the information given. 

The numerical values don’t matter. The intention is to draw a set of curves that are logical for 

the ship as shown.   

5.8.   

  
 
5.9.  You see below a sketch of a ship that is 200 m long. The displacement is made up of the 

lightship plus the weight of cargo in two holds. The forward cargo hold is empty. Draw the 

various curves of load and response for the vessel (weight, buoyancy, net load, shear, 

moment, slope and deflection) that are compatible with the information given. The numerical 

values don’t matter. The intention is to draw a set of curves that are logical for the ship as 

shown.  

5.10.   

  
 
5.11.  You see below a sketch of a ship that is 200 m long. The displacement is made up of the 

lightship plus the weight of ballast in 4 tanks. The cargo holds are empty. Draw the various 

curves of load and response for the vessel (weight, buoyancy, net load, shear, moment, slope 

and deflection) that are compatible with the information given. The numerical values don’t 

matter. The intention is to draw a set of curves that are logical for the ship as shown. 
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5.12.  Calculate the still water bending moment (in N-cm) for the solid block of plastic sketched 

below. Assume the block has density as given and is floating in fresh water (density also 

given). Is the moment hogging or sagging?  

   

  
 
5.13.  For the example of Murray’s method in the Chapter, remove the cargo weight and add 

4000 t of ballast, with a cg of 116m fwd of midship. Re-calculate the maximum sag and hog 

moments (both still water and wave).  

 
5.14.  For the example of Murray’s method in the Chapter, instead of using the weight locations 

as given, assume that the weights are distributed according to Prohaska. Re-calculate the 

SWBM. 

5.15.  Consider a 100m long tanker resting on an even keel (same draft fore and aft) in sheltered 

waters. The CG of all weights is at midships and is 8000 tonnes.   

Use Murray’s Method and Prohaska’s values to determine the still water bending 

moment for this vessel (i.e. get both the weight and buoyancy BMs about midships). 
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Topic 6: Longitudinal Strength: Wave Bending Moments 
 

 
Cape Spear 

Introduction 

In this Chapter we will  

Discuss the shape of ocean design waves 

The moments caused by waves 

~~~~~~~~~~~~~~~~~~~~ 

Design Waves  

 

Design wave forces are considered to be quasi-static. As a wave passes by a vessel, 

the worst hogging moment will occur when the midbody is on the crest of a wave and 

the bow and stern are in the troughs. The worst sagging moment will happen when 

the bow and stern are on two crests, with the midbody in the trough between. 

 

 

 
  

 
Whether for sagging or hogging, the worst condition will occur when the wavelength 

is close to the vessel length. If the waves are much shorter,  
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or much longer than the vessel, the bending moments will be less than if the 

wavelength equals the ship length.  

 

 
 

Consequently, the design wave for any vessel will have a wavelength equal to the 

vessel length. The wave height is also constrained. Waves will have a limited height 

to length ratio, or they will break. This results in a standard design wave of L/20. In 

other words the wave height (peak to trough) is 1/20th of the wave length.  

 

Trochoidal Wave Profile  

 

Note that the waves sketched above did not look like sinusoids. Waves at sea tend to 

be trochoidal shaped, rather than simple sine waves. This has the feature that the 

crests are steeper and the troughs are more rounded.  

 

A trochoidal wave is constructed using a rolling wheel.  

 

 
 

In the case of the design wave; 

LW = LBP 

HW = LBP/20     

 

We can see that; 

 

LW = 2  R 

HW = 2 r 

 

Which gives; 

for now we assume that this 

length and height or wave is 

possible 

} 
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2

BPL
R  ,  

40

BPL
r   

 

20




R

r

 
 

To construct a plot of the wave, we start with a coordinate system at the crest of the 

wave. 

 

 sinrRx   
)cos1(  rz  

 

This is a parametric equation (  is a parameter). We can write; 

 




sin
402

LL
x 

 

)cos1(
40


L

z
 

To plot the wave, it is a simple matter to calculate x and z as a function of  and then 

plot z vs x. This is done in the spreadsheet below. 

 
L 100

H 5

 x z

0 0 0

10 2.343657 -0.03798

20 4.700505 -0.15077

30 7.083333 -0.33494

40 9.504142 -0.58489

50 11.97378 -0.89303

60 14.5016 -1.25

70 17.09521 -1.64495

80 19.7602 -2.06588

90 22.5 -2.5

100 25.31576 -2.93412

110 28.20632 -3.35505

120 31.16827 -3.75

-6
-4

-2
0

2

0 50 100 150 200
x

z

 
 

 

 

 

 

 

1.1  L  Wave  

 = rolling angle } 
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L/20 waves have been found to be too conservative for large vessels, esp. for vessels 

>500 ft. A more modern version of the  L1.1  wave. In this case; 

 

 

as before, LW = LBP 

 

BPw LH 1.1     (in feet) 

or 

BPw LH 607.0   (in meters) 

 

For trochoidal waves this gives; 

 

2

BPL
R  ,      

BPLr 55.  (feet)   or  
BPLr 303.   (meters) 

 

Calculating Wave Bending Moments 

 

We can now calculate the wave bending moments by placing the ship on the design 

wave. We can use the bonjean curves to determine the buoyancy forces due to the 

quasi-static effects of the wave; 

 

 
 

The steps to determine the wave bending moment are; 

Obtain bonjeans 

at each station determine the still water buoyancy forces, using the design draft.  

Fisw = Aisw li g 

at each station determine the total buoyancy forces, using the local draft in that 

portion of the wave. Fiwt = Aiwt li g 

The net wave buoyancy forces are the difference between wave and still water.  

Fiwave=Fiwt-Fisw 
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This gives us a set of station buoyancy forces due to the wave (net of still water). 

These forces should be in equilibrium (no net vertical force). We can calculate the 

moment at midships from either the net effect of all forces forward, or all forces aft 

(the two moments will balance).  

 

 
 

 
 

There are other ways to do this kind of calculation. 3D cad programs such as Rhino 

can be used to find the still water and wave bending moments. Assuming that we 

have a hull modeled in Rhino, we can find the still water buoyancy forces for the fore 

and aft halves of the vessel by finding the volume and location of the centroids of the 

two submerged volumes.  

The procedure would be as follows; 

 

Produce solid model of hull 

Cut the model at both the centerline and waterlines. 

Find the volumes and centroids of the two halves. 

Calculate the buoyant moments about midships. 

 

A similar procedure would determine the wave values. The only difference would be 

the need to draw the trochoidal wave as a surface.  

 

The example below shows use of Rhino to calculate the Bouyant BM for a large 

vessel. The centroids of the two half volumes are shown.  

 

BMB = 109,000 x 1.025 x 53.97 (m3 x t/m3 x m = t-m) 

       = 6,029,798 t-m  

or  

BMB = 123,000 x 1.025 x 58.58 (m3 x t/m3 x m = t-m) 

       = 7,385,473 t-m  

 

average:   BMB = 6,707,376 t-m (sag) 
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The difference between this and the weight moment (hog) will give the SWBM. 

 

 
Rhino model, showing slices and centroids  

 

 

 

 

 

 

 

Topic 6: Problems 

 
6.1.  Using a spreadsheet, plot the design trochoidal wave for a 250m vessel, for the L/20 

wave.  

 
6.2.  Using a spreadsheet, plot the design trochoidal wave for a 250m vessel, for the 1.1 L

.5
 

wave. 
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Topic 7: Longitudinal Strength: Inclined Bending / Section 

Modulus 

 
a breaking wave in Lisbon 

Introduction 

In this Chapter we will  

Discuss the calculation of bending of an inclined vessel 

General calculation of hull section modulus/inertia 

~~~~~~~~~~~~~~~~~~~~ 

Inclined and Lateral Bending  

 

When a ship rolls the weight and buoyancy forces cause lateral as well as vertical 

bending. Normally the bending moment vector is aligned with the ship’s y axis. My is 

the bending moment that results from buoyancy and weight forces. 

 

  
 

 

When the vessels rolls by an angle q, the moment vector remains horizontal. This is 

because the buoyancy and gravity forces are always vertical.  This means that the 

bending moment is no longer aligned with the y,z axis of the vessel; 
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Moments are vectors, adding in the same way that force vectors do.  

 

 

sinwz MM      lateral bending   

coswy MM      vertical bending 

 

  

 

Stresses in the Vessel  

 

Both My and Mz cause bending stresses in the x (along ship) direction. 

 

NA

y

V
I

zM
       

CL

z
H

I

yM
  

 

 
 

Note: Sign convention: R.H.R., moment acting on +x cut face, compression is 

positive. 

 

In this case a +My causes tension (-) on the +z part of the vessel. A +Mz causes 

compression (+) on the +y side of the vessel. 

 

The total axial stress at any point on the vessel is the sum of the stresses caused by 

the two directions of bending.  

 

CL

z

NA

y

HVX
I

yM

I

zM



 

 

                     
CL

w

NA

w

I

yM

I

zM  sincos
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When we have bending moments in both y and z, there will be a line of zero axial 

stress that we call the heeled neutral axis. This is not necessarily aligned with the 

total moment. To find the heeled neutral axis we solve for the location of zero stress; 

 

CL

w

NA

w
X

I

yM

I

zM 


sincos
0 


 , 

 

solving for z in terms of y , we get; 

y
I

I
z

CL

NA  tan ,      

where we define:  tantan
CL

NA

I

I
  

yz  tan  
 

 is the angle of the heeled neutral axis from the y axis; 
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Peak Stresses  

 

The highest stresses will occur @ y=B/2 , Z=Zdeck 

 

There are 2 section modulus values; 

 

deck

NA
NA

z

I
Z  , 

2B

I
Z CL

CL   

 

So that we can write; 











CLNA

w
ZZ

M



sincos

max

 
 

This leads to the question: What is the worst angle of heel (cr)?  

 

To find it we use; 

 














CL

cr

NA

cr
w

ZZ
M

d

d 



 cossin
0max ,  

 

which gives; 

CL

NA
cr

Z

Z
tan

 
 

Typically 5.0CLNA ZZ   so  6.26cr  

 

For example, if 
NA

w

Z

M
0    then 















NANA

w
ZZ

M
2

6.26cos6.26sin
6.26  

           12.1
NA

w

Z

M
  

 

i.e. for this vessel, there is a 12% increase in stress during the worst roll.  
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Section Modulus Calculations  

 

Ships are largely built of plates. This means that the moment or inertia and section 

modulus calculations normally involve a collection of rectangular parts. For any 

individual plate: 

 

    
 

 

  
 

 

 
    

~~~~~~ 

For compound sections we need to be able to find the inertia about other axes. We 

use the transfer of axis theorem: 

 

  Ina = 1/12 b t3 

= 1/12 a t2 

  Ina = 1/12 t b3 

= 1/12 a b2 

  Ina = 1/12 a d2 

= 1/12 t b3  cos2 
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The overall neutral axis (NA) is found by equating 2 expressions for the 1st moment 

of area; 

A hNA =  ai hi 

 

The total area A is just the sum of areas. 

A =  ai  

 

This gives; 

hNA =  ai hi /  ai = (a1 h1 + a2 h2)/(a1+a2) 

 

The overall NA goes through the centroid of the compound area.  

 

    
 

Moment of Inertia Calculation 

 

Izz =  ai hi2  +  Inai  

 

INA = Izz -  A hNA2 

or 

INA = Inai +  ai (hi - hNA)2) 
 

A simple spreadsheet, as shown below, can be used to find the moment of inertia of a 

ship; 

 

  Izz = Ina + a c2 
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See Assignment #2 for an application.  

 

 

 

 
Section Modulus for Material Combinations  

(e.g. Steel Hull, Al Superstructure) 

 

Consider a section with 2 materials 

 

 
 

When the section bends the sections remain plane, meaning that the strain field is 

linear.  

 



E5003 – Ship Structures I  73  
© C.G.Daley   
 

 
 

 

To determine the stress/strain/deflection relationships, we convert the x-section to 

an equivalent section. The idea is to modify the section so that it is all made of one 

material, but retains the distribution of axial force (and bending stiffness). We do 

this by adjusting the width of one of the materials, in accordance with the ratio of 

Young’s Modulus. For example, Aluminum is converted to steel, but made thinner by 

Eal/Est. 

 

 
 

For the modified section, ITR is calculated in the usual way. The strains and 

deflections for any vertical bending moment will be correct.  

 

i.e. 
TREI

M
v   

 

The only error will be the stresses in the transformed region. The stresses in the 

unmodified region will be correct, but the modified region will be wrong by the ratio 

of modulii. We can correct this as follows; 

 

TRTR I

My

I

My
 1  and 

TRI

My

E

E

1

2
2 
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Topic 7: Problems 

 
7.1.  Find the moment of inertia of this compound section: 

1.1.   

      dimensions in mm 
7.2.   A box steel hull is 4m x 1m with a shell thickness of 10mm. It is inclined at 15 degrees, 

and subject to a vertical bending moment of 2 MN-m. Find the bending stress at the emerged 

deck edge. 

1.2.    

  
 
7.3.  For a composite beam (Steel plate with Aluminum web/Flange) loaded as show below 

a) find the central deflection.  

b) find the maximum stress in the Aluminum   

 

 
 
7.4.  Consider a compound steel-aluminum beam, shown below. Calculate the deflection d 

(show steps)   

  



E5003 – Ship Structures I  75  
© C.G.Daley   
 

Ans: 0.112m
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PART 3: Beams and Indeterminate structures 

 

Sintra Tile Mosaic 
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Topic 8: Beam Theory 
 

 
Test Grillage at Memorial University 

Introduction 

In this Chapter we will  

Develop the elastic behavior of beams 

Show the relationship among load, shear, bending, slope and deflection 

~~~~~~~~~~~~~~~~~~~~ 

Coordinate System and Sign Convention 

 

The standard coordinate system has the x axis 

along the neural axis of the beam. The positive y 

axis is pointed up.  The sign convention for force 

and moment vectors follows the right hand rule;  

 

+ Forces and deflections follow the axes. 

+ Moments and rotations follow the curl of the 

fingers (on the right hand) when the thumb is 

pointing along the axis. 

 

Shear strain:          

 

Bending moment:    
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To determine the equations for beam bending we 

take a small section of the beam (which represents 

any part) as a free body. We look at all the forces 

and moments on the section and assuming that 

the net force and net moment are zero (Newton!) 

we derive the equations.  

 

At this point we haven’t specified P,Q or M. They 

can have any values. We will examine equilibrium 

conditions and see how these result in 

relationships among P,Q,M. 

 

We start by summing vertical forces, which must 

sum to zero for equilibrium; 

     

   

 [N] 

which is simplified to; 

 
 

and rearranged to give; 

 
 

This is a differential equation that states that the 

line load on a beam is equal to the rate of change 

(slope) of the shear force. Next we sum moments 

about the right hand end, which must also sum to 

zero to show equilibrium of the free body. 

 

  

which is simplified to; 

 
 

note that dx is not just small, it is vanishingly 

small, so that dx2 is vanishingly small by 

comparison (i.o.w. we can remove the second order 

terms, in this case with no loss of accuracy). 

Therefore; 

 

 
or; 

in SI units: 

P : N/m 

Q : N 

M : Nm 

dx: m 
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This is our second (related) differential equation, 

which states that the shear in a beam is the rate of 

change (slope) of the bending moment. 

 

We now have two differential equations; 

 
  and  

 
We can re-express these relationships as integral 

equations. The shear is; 

 

 
In the form of a definite integral with a constant of 

integration the shear is; 

 

 
 In words, this equation means: shear is the sum of 

all loads from the start to x.  Similarly, the 

moment is; 

 

 
which becomes; 

 
 

Aside: The shear difference between any two 

points on a beam will be exactly equal to the load 

applied to the beam between these two points, for 

any pattern of load. This leads to a very easy and 

accurate way to measure force; 

 
This principle has been used to design load cells, 

and to instrument ship frames to measure contact 

loads from ice or slamming.  
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Adding Deformations 

 

So far we have differential equations for 

load/shear/bending relationships. Now we add 

deformations. 

 

The shear force and bending moments are causing 

stresses and strains in the beam. We make the 

assumption that we can ignore the shear 

deformations (this is part of what we call simple 

beam theory), so that only the bending moments 

cause distortions. This means that only consider 

the shortening of the compression side of the beam 

and the lengthening of the tension side. When this 

happens, the beam deforms from being straight to 

being a curve. The curve shape for any short 

length is an arc of a circle, with a radius R. The 

local radius, as we can show, turns out to depend 

only on the local bending moment. The figure 

below show a short length of a bending beam. The 

curved shape is also presented in differential form, 

meaning essential or limit shape for a very small 

value of dx.  

 

 

 
 

The neutral axis (NA) does not stretch or contract. 

The upper and lower parts of the beam compress 



E5003 – Ship Structures I  83  
© C.G.Daley   
 

and/or stretch. We can use the two ‘known’ 

relationships, the stress-moment equation; 

 

 
 

and 1D Hooke's law; 

 
 

 For the top fiber (in the figure above) we see that 

the strain is; 

 
 

from the above we have; 

 
 

which can be re-arranged to give; 

 

 
or 

 
 

We also have  

 
 

 
 

Where  is the 'radius of curvature' and  is called 

the 'curvature' (note the odd naming).  

 

Note also that d is both the change in relative 

angle of two cross sections separated by dx and 

also the change in slope between two points 

separated by dx along the beam. (x) is the slope of 

the beam.  
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This gives us; 

 
 

For prismatic sections, EI is constant, so; 

 

 
 

Similarly, to find deflections v, we use the 

relationship, assuming small deflections; 

 

 
and 

 
 

which lets us write; 

 
and; 

 
This completes the development of the differential 

and integral equations for beams.  
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Beam Example 1: Cantilever beam with left end 

free 

The cantilever beam is sketched at the left. The 

left end is free and the right end is fixed. The 

shear force is found by integrating the load. In this 

case the initial shear is zero, because there is no 

reaction at the left had end (it's a free end) ; 

 

 

 
                 

The bending moment is similarly found by 

integrating the shear. And again there is no initial 

value of moment because the boundary condition 

has no moment; 

 

 

 
The shear is a straight line. We did not solve for 

the right hand vertical reaction , but it is  

and it opposes the shear in the end of the beam 

(which we can see is ). The moment is a 

quadratic function with a maximum value of 

 as is easily found from summing moments 

about the right hand end. 

 

Next we solve the equation for the slope.   

 

 
by inserting the expression for bending moment 

we get ; 

 
which becomes; 
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At this point we can either carry forward the 

unknown initial slope or solve for it. We know the 

slope at L is zero, so we can write; 

 
 

which can be solved to get; 

 
 

therefore the complete equation for slope is; 

 

 
 

Now we can find the deflection. The integral 

equation is; 

 
which becomes; 

 
which becomes; 

 
 

The deflection at L is zero, letting us write; 

 

 
which gives; 

 
so the total equation for the deflection is; 

 

 
 

which completes the solution. 
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Example 2: Pinned-pinned beam 

 

In this case the initial value of shear is the 

reaction at the left end. We can solve for this from 

static equilibrium at the start. So the shear is;  

 

 

 
 

 

The bending moment is;  

 

 

 
 

The plot at the left shows the shear and bending 

solutions. In this case, we were able to use statics 

to solve for one unknown at the start, which 

simplified the problem.  

Next we solve the equation for the slope, as before, 

by inserting the expression for bending moment 

we get ; 

 
which becomes; 

 
 

At this point we can either carry forward the 

unknown initial slope or solve for it. We know, 

from symmetry, that the slope at  is zero, 

so we can write; 

 
 

which can be solved to get; 
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therefore the complete equation for slope is; 

 

 
 

Now we can find the deflection. The integral 

equation is; 

 
which becomes; 

 
which becomes; 

 
 

The deflection at L is zero, letting us write; 

 

 
 

which completes the solution. 
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Topic 8: Problems 

 
8.1.  Consider a beam made of steel joined to aluminum. The steel is 10 x 10 mm, with 5 x 10 

mm of Aluminum attached.  Esteel = 200,000 MPa, EAl = 80,000 MPa.  The beam is fixed as a 

simple cantilever, with a length of 100mm and a vertical force at the free end of  2 kN.   

 

   
  

convert the section to an equivalent section in steel and calculate the equivalent 

moment of inertia.  

What is the deflection of the end of the beam (derive from 1st principles).  

What is the maximum bending stress in the Aluminum at the support? 

   
8.2.  For elastic beam bending, derive the equation:  

 EI

M

dx

d




 
where  is the slope of the deflected shape, M is the moment, E is Young's Modulus, 

I is the moment of inertia. You can assume the =E and =My/I.  Use at least one 

sketch. 

 
8.3.  Find and draw the shear force and bending moment diagrams for the following beam. 

Find the values at supports and other max/min values. 

 

    
8.4.  There is a 3m beam. The shear force diagram is sketched below.  

Sketch the load, moment, slope and deflection diagrams (9) 

What are the boundary conditions and discuss whether there can be more than one option for the boundary 

conditions.(6) 
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8.5.  For elastic beam bending, complete Figure 1. The shear force diagram is sketched. You 

need to infer from the shear what the load (including support reactions) may be, as well as an 

estimate of the bending moment diagram, the slope diagram and the deflected shape. Draw 

the support conditions and the applied load on the beam, and sketch the moment, slope and 

deflection is the areas given. 

 

  
 
8.6.  Beam Mechanics. For the beam sketch below: 

 
a) sketch by hand the shear, moment, slope and deflection diagrams  
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b) Assuming the beam is a 10cm x 10cm square steel bar, solve the problem to find 

the bending stress at the fixed support. Use any method you like.     

 
8.7.  There is a length of steel that is 3.1416 m long, 50mm wide.  It has a yield strength of 

500 MPa (N/mm
2
), and a Young’s Modulus of 200 GPa. If the steel is thin enough it can be 

bent into a perfect circle without yielding.   
What is the maximum thickness 't' for the steel to be bent elastically (and not yield)?   

If the steel thickness is 1mm, what is the stress when it is bent into a 1m Dia circle.  

What would the shear force diagram look like?  

(Hint :this relates directly to the derivation of the differential equations for beam 

bending)  

 

 
 
8.8.  Sketch the shear, bending, slope and deflection patterns for the four cases shown below. 

No numerical values are required.  
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Topic 9: Solving Beam Equations 

 
A Train Station in Lisbon 

 
Introduction 

In this Chapter we will  

Review the differential equation set derived in the last Chapter and discuss 

solutions using Macaulay functions and Maple. 

~~~~~~~~~~~~~~~~~~~~ 

Family of Differential Equations 

 

Simple beam behavior considers only the 

deflections due to bending, and only in 2 

dimensions. Torsion, shear and other elastic 

distortions are neglected (for now).  

 

Consider a beam between two supports. We 

describe the deflections with the variable v(x). 
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The analysis of bending in Chapter 8, developed 

the following differential equations; 

 
 

 
 

 
 

 
 

These can be re-expressed into a set of related (not 

coupled) differential equations, of increasingly 

higher order; 

 

 
 

 
 

 
 

 
 

 
 

Seen in this way, the key behavior is deflection, 

with all other quantities being derived from it.  

There is a similar set of equations, expressed in 

integral form, starting from load; 
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The set of derivative equations show that if the 

deflected shape is known, all other quantities can 

be determined. In such a case there is no need for 

any boundary conditions. (to do: think of a 

situation where the deflected shape is fully known, 

while other quantities are not.) 

 

Normally we would not know the deflected shape. 

Instead we would know the load and would want 

to determine the deflected shape. In that case we 

would employ the integral equations. One 

significant issue with the integral equations is 

that the 'constants of integration' must be found. 

These are found from the boundary conditions. All 

types of end conditions can be represented as some 

derivative of deflection being zero. More 

specifically, two of the derivatives will be zero at 

each end of the beam. This gives four known 

boundary conditions for any beam (2 ends!), and so 

the four integral equations can be solved.  

 

At this level of consideration, there is no difference 

between a determinate and an indeterminate 

beam. All beams have 4 integral equations and 4 

boundary equations (or it could be said that all 

beams are represented by a fourth order ordinary 

differential equation with four boundary condition 

equations, regardless of the type or loading or 

supports).  

 

In the previous chapter we solved two beams by 

progressively solving the integral equations. Those 

cases were relatively simple, both because they 

were determinant systems, and they had simple 

load patterns, and in one case was symmetric. 

Solving non-symmetric cases of indeterminate 

beams with discontinuous loads (patch loads) can 
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involve a lot of algebra.  We will solve one such 

system in three different ways; 1) directly with the 

integral equations, 2) with Macaulay functions 

and 3) with the help of the Maple program.  

  

Example 3: Solving Piecewise Beam Equations 

 

The beam sketched at left is fixed on the left end, 

guided on the right and with the loading and 

properties shown.  A qualitative sketch of the 

solution is plotted, indicating that the solution is 

in three parts. The load is a patch load, so the 

solution must be in parts. The points labeled 'B' 

and 'C' represent break points in the solution. The 

various quantities at these points represent 

ending values for the partial solution to the left of 

the point and starting values for the solution to 

the right of that point.  

 

The boundary conditions create a set of unknown 

loads on the ends of the beam, which are sketched 

in the 'Loads' diagram.  For a fixed end we know 

that the deflection and rotation are zero. For a 

guided end we know that the shear (reaction) and 

rotation are zero. These conditions give two 

unknown loads at the left end of the beam. There 

are two known movements (deflection and slope 

are zero) at the left end of the beam. At the right 

end the moment and deflection are unknown while 

the shear and slope are both zero (recall that there 

are always 2 known and 2 unknown values at each 

end, in some combination of loads and 

displacements). In this particular beam we know 

that RA  is the only vertical support and must 

balance all the applied load (which is 4x5=20). We 

also know that there is no shear in the right end of 

the beam (the vertical force must be zero because 

the roller has released it). So the shear solution is 

as follows; 

 

part 1: 

 
part 2: 
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part 3: 

 
The moment solution is; 

part 1: 

 

 

 
part 2:  

 

 

 
part 3:  

 
 

The slope solution is; 

part 1: 

 

 

 
part 2: 

 

 

 
part 3: 

 

 

 
Therefore 
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The deflection solution is; 

part 1: 

 

 

 
 

part 2: 

 

 

 
part 3: 

 

 

 
 

Summary of solution: 
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This completes the manual integration method for 

solving example 3. To check this we will be solving 

the same problem in 2 other ways.  

 

Macaulay Functions 

 

Macaulay functions (also called singularity 

functions) are simply a generalization of the idea 

of a step function. These functions provide a 

convenient way of describing point forces, 

moments and piece-wise continuous functions. And 

when a few special rules of integration are 

employed, it becomes very easy to use Macaulay 

functions to solve beam problems.   

 

The fundamental Macaulay functions are shown 

on the left. Each function in the sequence 

represents the integral of the previous function 

(with the small exception noted later). Any of the 

functions can be multiplied to a constant to change 

the magnitude. 

 

For example, a unit moment at  is described 

as; 

 
and a moment of magnitude M at  is; 

 

 
 

Similarly, a point for of magnitude  at  is; 

 

 
 

The triangular brackets are just a way of saying 

that the function is meant to be seen as "one 

sided". In simple terms : 

 
 

Two examples of how Macaulay functions can be 

combined to describe various piecewise curves are 

shown below;   
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Integrating Macaulay Functions 

 

The integration of Macaulay functions is very 

similar to normal functions with an exception. If 

the exponent is positive then the normal rules of 

integration apply. If the exponent is negative, then 

we just add one to the exponent. The rules are 

shown at the left.  

 

So for example; 

 

 
but 

 
 

It likely makes sense to the reader that the 

integral of a point force is a step and the integral 

of a step is a ramp. Does it make sense that the 

integral of a point moment is a force?  To explore 

this idea, consider the functions sketched at the 

left. In the first case we have function with a small 

patch of load in one direction followed by a small 

patch of load in the opposite direction we have no 

net force but we do create a small point moment 
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(in the limit). When we integrate this we get a 

small triangle, which when integrated again gives 

a step.     

To Illustrate Macaulay functions, we start with an 

example of a pinned-pinned beam with a central 

force: 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Example 3: Solved with Macaulay Equations 
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Solving Example 3 using Maple  

 

Maple is a computer program that is capable of 

solving a wide variety of mathematical problems, 

including differential equations.  

 

Here is a very simple example of Maple’s ability to 

solve and plot differential equations. This is the 

solution of a cantilever beam (EI=1, L=10) under 

uniform load (p=-1).  

 

The basic differential equation; 

 

 
 

The boundary conditions are; 

 

 

 

 
 

Below is the full Maple input and result, showing 

the shape of a deflected cantilever; 
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Example 3 using MAPLE 14 to solve differential equations for beam 

by: Claude Daley 

 

 
> restart; 

The following aliases simplify the definition of loads. 
> dist_load := (w,a,b) -> w*Heaviside(x-a)- w*Heaviside(x-b):  # distributed force 

Length,       Stiffness,       Load at "a",  Load at end,  Location of  "a" 
> L := 10:  EI := 10^6: 
> wa:=5:we:=5:a:=2: b:=6: 
> loads := -dist_load(wa,a,b)-(x-a)/(b-a)*dist_load(we-wa,a,b);  

 

> plot(loads,x=0..L,title=`LOADS`, color=blue); 

       
> supports := {y(0)=0, D(y)(0) = 0, D(y)(L) =0, D(D(D(y)))(L)=0}: 
> de := EI*diff(y(x),x$4) = loads;    # Form differential equation    

 

> dsolve({de}union supports ,y(x)):    # Solve boundary value problem 
>     yy := rhs(%):                      # Extract deflection 
>     th := diff(yy,x):                  # Extract slope 
>     m := EI*diff(yy,x$2):              # Extract moment 
>     v := EI*diff(yy,x$3):              # Extract shear 
> plot(v,x=0..L,title=`Shear`, color=blue); 

           
> plot(m,x=0..L,title=`Bending Moment`, color=blue); 

         
> plot(th,x=0..L,title=`Beam Slope`, color=blue); 
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> plot(yy,x=0..L,title=`Beam Deflection`, color=blue); 

   
> evalf(subs(x=0,m));evalf(subs(x=L,m));evalf(subs(x=L,yy)); 

 

 
 

 

The manual, Macaulay and Maple solutions are all 

the same, as expected.  
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Topic 9: Problems 

 
9.1.  Solve the following beam by direct integration. What is the maximum deflection (mm)? 

What is the maximum stress (MPa) ?  

 

 
ANS: .000136mm, 140 Pa 

 
9.2.  Solve the following beam using Macaulay functions. What is the maximum deflection 

(mm)? What is the maximum stress (MPa) ?  

 

 
ANS: .000484mm, 253 Pa 
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Topic 10: Indeterminate Beams – Force Method 
 

 

part of the superstructure on an FPSO 
Introduction 

In this chapter we will  

Review the idea of indeterminate beams and one way to solve them 

~~~~~~~~~~~~~~~~~~~~ 

Transverse and Local Strength 

 

Most of the local structure in a ship exists to resist lateral loads. 

 

Example:  The sketch below shows a bulkhead between the deck and inner bottom, 

supported by one intermediate deck. The bulk cargo (liquid or granular) will exert a 

lateral pressure on the bulkhead.  

  

 
 

    
We can model the bulkhead frame as a pinned frame over 3 supports, subject to a 

lateral load; 
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To solve this type of structure we need a method to solve indeterminate structures.  

 

What does indeterminate mean? Determinate structures have a simple set of 

supports, such that the support reactions can be found from considerations of rigid 

body equilibrium alone. This means that there are just enough supports for 

equilibrium to exist. This is normally 3 for 2D structures and normally 6 for 3D 

structures. The number of supports is also the number of equilibrium conditions that 

need to be satisfied.  

 

The sketch below illustrates the difference between determinate and indeterminate 

for a 2D beam. 

 

Determinate Indeterminate 

  
  Find the Reactions   Find the Reactions 

  

  Then find the deflections   Then find the deflections 

 
Reactions don’t depend on deflections 

 

 

 

 

 

The reactions depend on the deflections 

  

 Equations for Reactions Equations for Reactions 

  coupled 
 Equations for Deflections Equations for Deflections 

There are two approaches for solving indeterminate systems. Both approaches use 

the principle of superposition, by dividing the problem into two simpler problems, 

solving the simpler problems and adding the two solutions.  
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The first method is called the Force Method (also called the Flexibility Method).  

The idea for the force method is; 

 

step   release internal forces* or external reactions until we have one or more 

determinate systems 
step   solve each determinate system, to find all reactions and deflections. 

Note all incompatible deflections 
step   re-solve the determinate structures with only a set of self-balancing 

internal unit forces* (at internal releases) or unit reaction forces at removed 

reactions. This solves the system for the internal or external forces removed in . 

Observe the magnitude of incompatible deflections that occur per unit force.  
step a  scale the unit forces to cause the opposite of the incompatible 

deflections noted in   
step   Add solutions (everything: loads, reactions, deflections…) from  and 

a. Note that this will result in no incompatible deflections.   

*note: forces include both forces and moments 

 

 

Overview of Force Method 

 

The structure: a beam over multiple supports: 

 

 
 

step  cut the structure to have one or more determinate systems 

 

 
 

 

 

step  solve each system. Note  – an incompatible deflection.  
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step   re-solve the cut structures with self-balancing internal unit forces*  

step a  scale these forces (moments) to cause the opposite of the incompatible 

deflections noted in   

 

step   Add solutions (everything: loads, reactions, deflections…) from  and 

a. Note that this will result in no incompatible deflections.   
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Example of the FORCE Method:  

Manual Solution 

 

 

Problem: 

     1 - Find MA, RA, RB in terms of w, EI, L 

     2 – Find maximum displacement 

 

 

 

Solution: 

Part 1 – solve with MA released (denoted ’ ). The reason we do this is because the 

structure is statically determinate. 

 

The line load function is: 

 

 
 Reactions are found from static equilibrium: 
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The shear  is found by integrating the line load:   

 

 

 
         

The moment  is found by integrating the shear:  

 

 
 

 The slope  is found by integrating the moment: 

 

 
          

And finally the deflection  is found by integrating the slope: 

 

 
     

This leaves us with one left unknown to find,  which is the slope at A  . We use the 

boundary condition:  

 
which is solved to give; 

 
Substituting back gives; 

 

Slope:  

 
 

Deflection:   
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The gives us the first half of the solution. Now we need to ‘correct’ the solution, by 

removing the rotation at A (in Part 2). This is done by applying a moment at A, of 

just sufficient magnitude to cause  . This moment will be the true reaction 

moment at A. All other responses in Part 2 are added to the Part 1 responses 

(deflections, shear, moments, etc). Responses can be added because the systems are 

linear (superposition holds). 

 

 

Part 2 – solve with just  (the * denotes the corrective solution ).  will cause a 

rotation opposite to  , which when added to the results of Part 1 will create a 

‘fixed’ condition (no rotation) at A. Initially  is unknown. 

 

Reactions are found from static equilibrium: 

 

 

 
 

 

 
 

 is negative, so  is negative.  is positive. 

 

The shear  is found by:   

 
 

The moment  is found by integrating the shear:   

 

 
The slope  is found by integrating the moment: 
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And finally the deflection y’(x) is found by integrating the slope: 

 

 
              

To find *A and M*A , we use:  

 

 

 
 

 
 

Substituting back gives; 

 

Reactions: 

 

 
                  

Shear:    

 
 

 

Moment:      

 
 

Slope:           

 
 

Deflection:    

 
 

This gives us the second half of the solution.  
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Now we sum the two parts together for the complete solution: 

 
 

 
 

 
 

 

 
 

 

 
 

 

This is the answer to the first question. The maximum deflection is found where the 

slope is zero. The full expression for the slope is:  

 

 
 

 
 

         

We can create a new normalized variable , which ranges between 0 and 1. This 

gives us slope in a simpler form: 

  

 
where 

 
 

           To find the location of zero slope we set the term inside the brackets above to 

zero, which can be simplified to: 

 

                   

 

The solution of this equation will be the location of maximum deflection. One way to 

solve this (which can be done without derivatives or computers) is to solve the 



E5003 – Ship Structures I  115  
© C.G.Daley   
 

equation for z iteratively. This can be done on any hand-held calculator. We pick one 

of the z terms (the first term here), and express z as a function of z:                    

 
 

This iterative equation might be expressed as: 

 

 
                    

Recall, z ranges from 0 to 1. So any value between 0 and 1 is a possible starting 

value. We can guess that the maximum deflection will be at z >.5, so we could start 

with a guess of 0.6. It doesn't really matter, except that the better the initial guess, 

the quicker the solution will converge. Starting with z =0.6, we iterate to 0.5975 in 7 

iterations.  

 

 

 

 

 

Note: there is another possible iterative version of the z equation; 

 
 Unfortunately, it won’t converge to an answer in the 0-1 range.  

 

The equation for deflection is: 

 

 
 

 
 

The final step in the solution, is to find  , which is at  : 

 

 
 

 
 

This answer can be checked in Roark, which gives the same answer.  This completes 

the problem. 

 

0.48

0.5

0.52

0.54

0.56

0.58

0.6

0.62

0.48 0.5 0.52 0.54 0.56 0.58 0.6 0.62
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Topic 10: Problems 

 
10.1.  Solve the below by removing the reaction RB (as shown). This creates ‘cut’ 

problem that is a cantilever beam.   

 

        
 

 
10.2.  Force Method.  

 

  
 

a) Sketch 3 alternative approaches to solving this indeterminate problem using the 

force method. For each approach, you will need two sketches of the auxiliary 

systems.   

 

b) Using one of the approaches sketched in a) , solve the system to find the reaction 

at B (in kN) 
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 Topic 11: Indeterminate Beams – Displacement Method 
 

Cruise Ship in Adriatic 
 

 

Introduction 

In this chapter we will  

introduce the displacement method used to solve structural problems  

introduce the standard stiffness components for a beam in 2D and 3D 

~~~~~~~~~~~~~~~~~~~~ 

Indeterminate Problem 

 

We start by considering the indeterminate beam as shown below. This could be 

described as a fixed-pinned beam or a cantilever with a pinned end.  

 

 
 

 To solve this problem with the displacement (stiffness) method we create two sub-

problems, each simpler than the whole problem. Rather than removing a support 

(removing a force or moment), we remove a movement (i.e we completely fix the 

structure). This becomes the problem marked * below. To the * problem, we add a 

second problem, the ** problem,  that fixes any errors that we created with the * 

problem. In this case we have a moment MB* that should not exist, while we have a 

B* that should not be zero. So, in the ** problem, we impose B**, (and only a B**) 

sufficiently large to cause a moment MB** that is equal and opposite to MB*.  

 

 

 

 

Find MA RA and RB 
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fixed-fixed beam 

known solution 

MA*=- MB*=pL2/12 

RA*=RB*=pL/2 

 

 

applied moment at pin 

the moments and forces can be found 

from the “stiffness” terms, as shown 

below: 

MB**= B** 4EI/L  

MA**= B** 2EI/L  

RB**= - B** 6EI/L2  

RA**= B** 6EI/L2  

 

To solve the problem we use;  

MB**+ MB*=0 

which gives; 

B** 4EI/L - pL2/12 = 0 

 

from this we can solve for B**; 

B** = pL3/(48 EI) = 0 

 

from this we can find all other ** terms; 

MA**= pL3/(48 EI) 2EI/L = 1/24 pL2 

RB**= - pL3/(48 EI) 6EI/L2 = - 1/8 pL 

RA**= pL3/(48 EI) 6EI/L2 = 1/8 pL 

 

from this we can find the reactions; 

MA =MA* + MA** = pL2/12 + pL2/24 = 1/8 pL2 

RB = RB* + RB** =  - pL/8 + pL/2 = 3/8 pL 

RA = RA* + RA** = pL/8 + pL/2 = 5/8 pL 

 

The terms used to find MB**, MA**, RB** and RA** are called stiffness terms because 

the are an ‘action per unit movement’, such as a force per unit displacement or 

moment per unit rotation. They can also be a kind of ‘cross stiffness’ such as a force 

per unit rotation or a moment per unit displacement. In the case of the example 

above, with the equations; 

 

MB**= B** 4EI/L 

MA**= B** 2EI/L 

RB**= - B** 6EI/L2 
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RA**= B** 6EI/L2 

 

The stiffness terms 4EI/L, 2EI/L, -6EI/L2 and 6EI/L2 are forces and moment ‘per unit 

rotation’. We will define these stiffness terms in the next section.   

 

Stiffness Terms 
 

When using the stiffness method, we always need to find a set of forces and moments 

that occur when we impose a movement at a support. The movement will correct a 

situation that involved the suppression of a movement at a support. In our case here, 

the structure is a beam, and the supports are at the ends of the beam. The supports 

prevent the ends of the beam from moving. There are 3 possible movements at a 

support for a 2D problem, and 6 for a 3D problem. Because of this we will define a 

standard set of ‘degrees of freedom’ for a beam. A ‘degree of freedom’ can have either 

a force or displacement, or a rotation or moment. The standard 2D degrees of 

freedom for a beam are shown below; 

 

    
 

The degrees of freedom follow the Cartesian system, with the right-hand rule. These 

are essentially x, y, rotation (called rz). In general, to impose a unit movement in one 

(and only one) of these degrees of freedom, we need to also impose a set of 

forces/moments, The forces/moments must be in equilibrium. These forces/moments 

will be ‘stiffnesses’.  

 

The mechanics are linear. This means that the set of forces/moments corresponding 

to each movement can be added to those of any other movement. A general solution 

for any set of movements of the degrees of freedom can be found by superposition.  

 

For now we will just consider the 2D case and derive the stiffness terms. There are 6 

degrees of freedom. For each degree of freedom, there are potentially 6 forces or 

moments that develop. This means that there are a total of 36 stiffness terms. Any 

single term would be labeled kij, meaning the force/moment at i due to a 

displacement/rotation at j. For example; 

 

k11 = force at 1 due to unit displacement at 1 

k41 = moment at 4 due to unit displacement at 1 

k26 = force at 2 due to unit rotation at 6 

 

All the terms can be written in matrix form as; 

 

2D beam = 6 degrees of freedom 
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We will now derive these 36 terms. Luckily they are not all unique.  

 

 

Axial Terms 
 

The axial terms are found by asking what set of forces is required to create a unit 

displacement at d.o.f. #1 (and only #1);  

 

 
 

For axial compression, the deflection under load is; 

 

L

AE
k

F

AE

LF
 11

1

11
1 1




 
 

the force at d.o.f. #4 is equal and opposite to the force at #1; 

 

L

AE
k

F
FF


 41

1

4
14


 

 

There are no other forces (at #2, 3, 5, 6), so we have; 

 

021

1

2  k
F


  and  0615131  kkk  

A displacement at 4 would require a similar set of forces, so that we can also write; 
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L
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k 44 , 

L

AE
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14 , 064543424  kkkk  

 

This has given us 12 terms, 1/3 of all the terms we need. Next we will find the terms 

for the #2 and #5 direction. 

 

 

Shear Terms 
 

The shear terms are found from the set of forces is required to create a unit 

displacement at d.o.f. #2 (and only #2);  

 

 
 

 

For shear of this type, the deflection is; 

 

322
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Note: to derive this easily, think of the beam as two cantilevers, each L/2 long, with a 

point load at the end, equal to F2.  

 

The force at d.o.f. #5 is equal and opposite to the force at #2; 

 

352
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Following from the double cantilever notion, the end moments (M3, M6) are ; 

26232263

6

2 L

EI
kk

L
FMM     

There are no axial forces, so; 
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04212  kk  
 

A displacement at #5 require a similar set of forces, so that we can also write; 

355

12

L

EI
k  ,  325

12

L

EI
k


 ,  

26535

6

L

EI
kk


 ,   04515  kk  

This has given us 12 more terms, for 2/3 of all the terms we need. Next we will find 

the terms for the #3 and #6 direction. 

 

Rotary Terms 
 

The rotary terms are found from the set of forces/moments required to create a unit 

rotation at d.o.f. #3 (and only #3);  

 

 
 

For illustration and to find these stiffness terms we will solve the system. We can 

draw the shear force, moment, slope and deflection  diagrams as below; 
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We can use the boundary conditions (3=1, 2=0, (L)=0,(L)=0) to find M3 and F2. 
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These two equations can be solved to get; 

 

L

EI
M

4
3  , 

22

6

L
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from these we can find;  
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This allows to find the stiffness terms; 
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A rotation at #6 require a similar set of forces, so that we can also write; 
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We can collect all these terms in the matrix; 

 





















































L

EI

L

EI

L

EI

L

EI
L

EI

L

EI

L

EI

L

EI
L

AE

L

AE
L

EI

L

EI

L

EI

L

EI
L

EI

L

EI

L

EI

L

EI
L

AE

L

AE

K

46
0

26
0

612
0

612
0

0000

26
0

46
0

612
0

612
0

0000

22

2323

22

2323

 
 

Note that the matrix is symmetrical. This means that terms such as k35 (moment at 

#3 due to displacement at #5) is equal to k35 (force at #5 due to rotation at #3). This 

may seem quite odd that these two items would be equal. We will examine this in 

the next Chapter.  

 

The standard 3D degrees of freedom for a beam are shown below; 

 

 
 

The K matrix for a 3D beam is a 12x12 (144 terms).  

 

3D beam = 12 degrees of freedom 
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Topic 11: Problems 

 
11.1.  Solve the pinned-pinned beam by using the displacement method as sketched below. The 

solution for the fixed-fixed beam is the same as above. Then it is necessary to show that 

MB*+MB**+MB***=0 and   MA*+MA**+MA***=0. Note:  MA** = ½ MB**, and MB*** = 

½ MA***.  

 

 
 
11.2.  Describe how you would solve the beam shown below by using the displacement method.  

 

 
 
11.3.  For the simple beam shown below, derive the shear stiffness terms (i.e k15  to k65) 

 

 
 
11.4.  Solve the beam shown below using the stiffness method. Find the reactions at A and B, 

and the deflection at B.  
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ANS: MA= 166667 N-m,  MB = 83333N-m   B = -.2082m 

 
11.5.  Stiffness method  .   

sketch a 2D beam and show the degrees of freedom.  

Describe the meaning of the terms (any, all) in the 6x6 stiffness matrix for a 2D 

beam, and give 2 examples. 

 
11.6.   Explain the difference between the “Force” method, and the “Displacement” method.  

 
11.7.  In the stiffness method for a 2D beam, the standard value for the k22 stiffness term is; 

 
 

Derive this equation (Table 1 in appendix may be useful).  
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Topic 12: Energy Methods in Structural Analysis 
 

 

Coliseum 
 

Introduction 

In this chapter we will  

Discuss application of energy methods in structural analysis   

Show how conservation of energy conservation to the symmetry of structural 

stiffness terms 

~~~~~~~~~~~~~~~~~~~~ 

Energy Methods 

Structural analysis is concerned with forces, 

deflections, stresses and strains. All these involve 

energy. An analysis of energy can be a way to 

simplify structural analysis. Energy is a scalar, 

and must be conserved, somehow.   In some cases 

the mechanical work done by a force is converted 

to heat by friction: 
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In some cases the mechanical work done by a force is converted to elastic potential 

energy in a spring. Potential energy (in a spring or in a gravitational field) can later 

be recovered: 

 

 
 

Consider a body subject to a simple axial load: 

 

 
 

 

 
 

The above is correct for situations where axial stresses dominate, as in column 

compression or simple beam bending. This does not take shear strain energy into 

account.  
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Example:  derive formula for Cantilever beam deflection using energy methods.  

 

Consider a simple cantilever with rectangular cross section.  

 

 
 

 

Start with Energy Balance equation: 

 

External Work (EW) done by the applied load P is balanced by the elastic potential 

energy (EPE) stored in the beam; 

  

 
 

 
 

In this case we assume that the stress is the result of bending and we find the 

stress from; 

 
and 

 
which lets us write; 

  

 
 

 
 

We can re-write dvol  as w dx dy and use : 
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The last part of the above equation is the moment of inertia: 

 
 

This simplifies the problem to: 

 

 
 

Which gives the final and correct answer: 

 
 

 

 

Betti-Maxwell Reciprocal Theorem 

 

The Betti-Maxwell theorem states that for any linear elastic body (also called a 

Hookean body), that the movement at a d.o.f. A, caused by the application of a 

force/moment F at a d.o.f. B, is exactly the same as the movement at a d.o.f. B, 

caused by the application of a force/moment F at a d.o.f. A. In the sketch below,  

refers to the movement at  due to the application of a force at  . So we can write the 

Betti-Maxwell theorm as; 
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Proof:  

As a linear system, superposition will hold. The structure will assume the same final 

position regardless of the order of application of the forces. This means that the same 

stored elastic energy will exist in either case. These are ‘conservative’ systems, 

meaning that all work done by the loads is converted to elastic potential energy (and 

is ‘conserved’ to be recovered later). We will apply F to the structure in two places, 

and compare the work done when we change the order in which we apply the forces.   

 

When F is applied at both 1 and 2, the total deflection at 1 and 2 will be; 

   

 
 

 
 

If we imagine applying F at 1 first, and then at 2, the work done will be; 

 

 
 

If we imagine applying F at 2 first, and then at 1, the work done will be; 

 

 
 

The work done will be the same, so; 

  

 
 

Hence Betti-Maxwell is proven.  

 

Example 1 of Betti-Maxwell 

  

 

 

For a simple cantilever, the deflection at x2 caused by a force F at x1 should be the 

same as the deflection at x1 when F is applied at x2 : 

      

 

 

Solution: 

The beam deflection tables (see Appendix) can be used to find 12 and 21 .  

To find  21  we first find the deflection at x1 . The beam to the right of x1  has no shear 

or bending. Consequently it is perfectly straight. It slopes downward at the same 
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angle as the slop at x1 , which is 11 .   The addition deflection past  is just equal to 

the slope angle times the distance.  The total deflection at x2  found as follows:  

 

 
  

 
 

 
 

 
  

To find  1 2 we use the general equation for the deflections in a cantilever of length x2  

and solve for the deflection at x1 .  

 
 

 The two results are identical, as Betti-Maxwell predicted.  

 

       

 

Example 2 of Betti-Maxwell 

  

For a simply supported beam, the rotation at the right hand end caused by a unit 

vertical force F  in the center  should be the same as the vertical deflection at the 

center  caused by a unit moment at the right hand end : 

      

 

Solution: 

The beam deflection tables (see Appendix) can be used to find 12 and 21 .  

The rotation  21   is as follows:  

 
 

 
 

  

To find  1 2 we use the general equation for the deflections in a simply supported 

beam with an end moment and solve for the deflection at L/2 .  
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The two results are identical, as Betti-Maxwell predicted.  
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Topic 12: Problems 

 
12.1.  

of Betti-Maxwell. 

 

 
 
12.2.  Illustrate the Betti-Maxwell theorem using the beam load cases shown below. Use the 

deflection table on pg 8 at the end of the paper.  
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Topic 13: The Moment Distribution Method 
 

 
Venice 

 

Introduction 
 

In this chapter we will describe the moment distribution method for solving 

indeterminate beams 

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

 

Overview 

 

The moment distribution method is a type of 

displacement (stiffness) method because it makes 

use of the stiffness terms we derived earlier. It is 

particularly useful for solving problems involving 

beams over multiple supports, and frames with 

moment connections. It is what can be termed a 

‘relaxation’ method. This refers to the iterative 

way that errors are ‘relaxed’.  The method can be 

solved manually on paper with a simple calculator, 

and was once the dominant method used in 

professional practice. These days it can easily be 

solved with a spreadsheet, but is seldom used 

professionally. Its current value is in helping 

students develop an understanding of structural 

behavior. The essence of structures is the 

interconnected behavior of structural elements. 

The moment distribution method is all about the 

way neighboring elements interact. 

 

The method was developed by Prof. Hardy Cross in the 

1920s and 30s. Cross studied at MIT and Harvard, taught 

at Brown, Illinois and Yale and consulted 

extensively.  

 

 

Hardy Cross 

(Wikipedia) 
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Prof. Hardy Cross described his procedure as follows:  

 

" The method of moment distribution is this: 

1. Imagine all joints in the structure held so that they cannot rotate and 

compute the moments at the ends of the members for this condition; 

2. At each joint distribute the unbalanced fixed-end moment among the 

connecting members in proportion to the constant for each member defined as 

"stiffness"; 

3. Multiply the moment distributed to each member at a joint by the carry-over 

factor at the end of the member and set this product at the other end of the member; 

4. Distribute these moments just "carried over"; 

5. Repeat the process until the moments to be carried over are small enough to 

be neglected; and 

6. Add all moments - fixed-end moments, distributed moments, moments carried 

over - at each end of each member to obtain the true moment at the end." 

 

 

 

Description of Method 

 

The moment distribution method is a way to solve 

indeterminate structures comprised of beams. The 

method works for continuous beams over multiple 

supports and for frames. In its basic form it does 

not consider joint translation. All joints are only 

assumed to rotate, as would occur at a pin or roller 

support, or at a frame connection (beams to 

column) where sway is prevented. Subsidence of a 

support can easily be handled. An extended 

version can treat sway of a frame system.  

 

Fixed End Moments – FEM : To start the procedure, 

all joint are considered fixed and all fixed-end 

moments are calculated. One example of fixed end 

moments is shown below for a beam with a central 

point force. The moments are expressed as true 

moments acting on the supports. This is an 

important point. Note that both end moments in 

the sketch cause concave downward bending, and 

would this have the same sign in a bending 

moment diagram. But here they have opposite 

true senses (clockwise on left and counterclockwise 

on right) and so have opposite signs. And we keep 



E5003 – Ship Structures I  137  
© C.G.Daley   
 

tract of the moments acting from the beam, not the 

reactions by the support.  

 

Moment Distribution factors - : At each joint 

where two or more beams connect, each beam 

provides part of the rotary stiffness. When an 

external moment is applied to the joint, it rotates 

as a unit, with each of the connecting beams 

resisting part of the total moment. The portion of 

the total is called the moment distribution factor - 

. For each beam the moment will be : 

 
   

 

where  is beam end rotation stiffness (see 

Ch10); 

  

  for beam i 

 

The moment distribution factor is; 

 

 

 

Carry-Over factors - CO: As we saw earlier, when one 

end of a bean is rotated, the other end of the beam 

experiences a moment as well. This is the  

moment. In other words, when a moment is 

applied to one end of a beam, and the far end is 

fixed, that other end experiences a moment. 

Because  is half of , the far end moment is 

always half of the near end moment. Therefore the 

carry over factor is always 0.5.  
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Steps in the Moment-Distribution Method 

 

The steps in the MDM are shown on the left.  

The steps are discussed in more detail below. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Step 1: sketch the structure: 

 

Sketch the structure, show the loads and number 

the joints. In the case of two or more members 

connected at a joint, there is one 'end' for each 

beam. Any correcting moment applied to the joint 

is divided among the ends according to the 

moment distribution factor.    
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Step 2: plan the solution strategy and determine if 

the structure will sway 

 

In the standard type of problem the joints do not 

translate, they only rotate. Axial and shear 

deformations are ignored. Only bending 

deformations are considered. If the model supports 

permit one or more joints to translate, and the 

load is such that it will cause such a movement, 

we need to consider sway. The example structures 

at the left show both types (no-sway and sway).     

 

Note: And 'imposed' joint movement, as would 

occur when a support 'settles' a fixed amount, is 

not a sway problem. Imposed movements are just 

as easy to solve as are applied loads.  

 

 

In cases where there are redundant parts of the 

structure (a determinant sub-structure), such as 

cantilever portions as shown at left, these should 

be removed and replaced with the moments or 

forces that they cause on the remaining structure.   

 

 

Step 3: Find moment distribution factors  : 

 

For each joint we find the set of moment 

distribution factors. In general; 

 

 
 

The moments will tend to be larger in the stiffer 

members, where rotary stiffness is . Thus the 

shorter members will tend to have the higher   
 factors.  
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Step 4: Find fixed-end moments: 

 

In this step, we find the fixed end moments for 

each beam end. In the example at left, we have 3 

beams connected in a frame. The top two have 

loads and so have fixed-end moments. The vertical 

beam (the column) is unloaded so its FEM are 

zero.   

 

 

 

 

 

 

Steps 5, 6, 7, 8, 9: Perform iterative calculation to 

correct end moments. The fixed-end moments 

found in step 4 are the first estimate of the 

solution. The moments are in equilibrium with the 

external loads, with the only problem being that 

some of the joints are incorrectly fixed, when they 

should be free to rotate. We will set up a 

calculation table that will allow us to add a 

correcting moment to each joint. We will perform 

the corrections iteratively and the solution will 

converge to the correct answer.  

 

The table with the solution is shown on the next 

page. With two beam, there are 4 end and so there 

are 4 columns in the table. The first row contains 

the moment distribution factors. The second 

contains a note describing the target moment (this 

is an extra feature normally not included). The 

third row contains the fixed end moments. The 

fourth row shows the total correction (later 

ignored), with the fifth row dividing the correction 

among the beam ends. The sixth row adds the 

carry-over moments from the neighboring ends. 

And then the seventh row add the third, fifth and 

sixth row terms to get a new estimate for the end 

moments.  

 

The whole process is repeated until the solution is 

sufficiently converged.  

 



E5003 – Ship Structures I  141  
© C.G.Daley   
 

 

 
 

Steps 10: Solve for the other reactions and beam 

responses.  

 

Once the end moments on a beam are known, the 

vertical reactions can be found from static 

equilibrium.  

 

Remember that the end moments found in the 

MDM are moments acting "on" the supports. 

Moment reactions "from" the supports are opposite 

to these.  

 

Once the vertical reactions are found, all other 

responses (distribution of shear, bending, slope 

deflection, stress) can be found using normal beam 

theory.  
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Example 2: Here is a simple case that solves fully 

in 1 iteration. This will happen when there is only 

one joint that needs to rotate to bring the problem 

into equilibrium. 

  

Also note that this example shows a case of 

different EI values.  
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Example 3: Here is a case that shows a frame with 

two columns. This is a relatively complex case, 

though without sway.  
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solved, the full set of horizontal and vertical 

reactions can be found using force and moment 

equilibrium.  
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With the reactions found, the shear force and 

bending moment diagrams can be sketched as 

follows:  

 

The bending moments above are drawn on the 

compression side of the beam. Deflections can be 

found by double integration of the moment 

diagram.  

 

Exercise: What is the slope at joint #3?  
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Topic 13: Problems 

 
13.1.  Moment distribution method 

13.2.   

 
 
13.3.  Moment distribution method 

 

 
 

 
13.4.  Moment distribution method. For the case shown on the attached page (Figure 1), fill in 

the first two cycles of the MD calculations.   

13.5.   

 
 
13.6.  For the statically indeterminate beam shown below, with the loads, properties and end 

conditions as given,  

a) Solve using the moment distribution method. 

b) What is the vertical reaction at the middle support  
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13.7.  A 3 bar frame is shown below.   

Solve for the moments using the moment distribution method.  

Sketch the deformed shape. 

Find the vertical reaction at the pin (the right hand end).  

 

 
 

 
13.8.  Solve the frame using the MDM method (suggest you use a spreadsheet). 

 

 
 
13.9.  Solve the frame using the MDM method (suggest you use a spreadsheet). 
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13.10.  For the case shown below, set up and fill in the first two cycles of the Moment 

Distribution calculations.  

 
 
13.11.  A 2 bar structure is shown below.   

Solve for the moments using the moment distribution method.  

Find the vertical reaction at the pin A (the left).  
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Topic 14: The Moment Distribution Method with Sway 
 

Introduction 

 

In this chapter we will  

extend the application of the moment distribution 

method for solving frames with sway 

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

 

In the previous chapter we dealt with beams and frames in which joints could not 

translate due to bending.  In this chapter we all add the possibility of sway motion. 

For simplicity we will only consider one sway motion.  

 

 

 

 

The solution of a sway 

problem takes two parts. In 

the first part a unit sway 

sway is imposed on the 

structure (call this the * 

problem). The imposed motion 

causes initial fixed end 

moments, which relax as the 

solution progresses, just as 

happens with applied forces. 

The force required to impose 

the unit sway can be found 

once the solution is found, just 

like the other reactions. In the 

example at left this is F*2x . 

   

In the second problem (the 'f' 

problem) the sway is 

prevented, and the problem 

solved.   

 

 

 

 

 

 

 

a Quadrant 
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To get the total 

solution we need to 

scale the * problem 

by  (we call this the 

** problem) and add 

it to the 'f ' problem.  

  

How large is  ?      

 

 is chosen so that the 
conditions at the 
"false" sway support 
are corrected.  
 

If there is no direct 

force at the false 

support, (as in the 

example at left), we 

want: 

 F*2x = -F f2x 

 

If there is a direct 

force at the false 

support, we would 

want: 

 F*2x = F2x - F f2x 

 

 

 

 

 

 

 

 

 

 

    

 

 

 

 

 

 

Example of MDM with Sway 
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To illustrate the moment distribution method with 

sway, we will use a problem similar to Example 3 

in Topic 13. In this case the problem has a roller 

on the left, instead of a pin. As a result the frame 

can sway.  

 

 To solve the problem we need to split the problem 

into two component problems. The first problem 

has sway prevented (by a pin on the left support). 

The complementary problem has an imposed sway 

which will create a reaction of opposite magnitude 

to the first problem. 

 
 

    The first problem was solved in Example 3 

above. The reaction at the left hand pin was (see 

pg. 130); 

 
 

Now we solve the second problem with a unit 

displacement  applied to the roller. For the 

imposed unit displacement, we have the initial 

fixed end moments as shown at the left. For 

example the moments in the right column are;  

 

 
 

Once we have solved the second problem, and 

found the reaction at the roller, we scale the whole 

solution to match the reaction with the 17.1 kN we 

need. The final answer is the sum of the scaled 

solution of second problem and the solution of the 
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first problem.  All the solutions needed are 

presented below in the form of spreadsheets.  

 

The solution of Problem #1: 

 

 
This is the solution of Problem #2: 
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This is the solution of Problem #2, scaled to counteract the pin force from problem 

#1 (call this #2a): 

 

 
 

This is the sum of Problem #1 +  #2a, which is the frame with roller solution. The 

values are moments at the locations indicated. 

 

 1  2  3  4 5 

 A B C D E F G H 

MDM 0.0 183.89 -294.13 110.24 127.84 -

127.84 

82.27 5.59 

BEAM3D 0.0 183.8 -294.4 110.6 127.3 -127.3 83.9 6.47 

 

To confirm these values independently, the same problem was analyzed in the DnV 

program BEAM3D. The values shown above correspond very well with the MDM 

results. The plots from BEAM3D are shown below; 
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X

Z

1 2 3

4

5

 
bending moment diagram, and reactions. 

 

 

X

Z

1 2 3

4

5

 
shear force (red), bending moment and deflections (exaggerated) 
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Topic 14: Problems 

 
14.1.  Solve the frame using the MDM method (suggest you use a spreadsheet). 

 

 
14.2.  A 3 bar frame is shown below.   

Solve for the moments using the moment distribution method.  

Sketch the deformed shape. 

Find the vertical reaction at the pin (the right hand end).  

 

 
 
1.3.   
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Topic 15: Matrix Structural Analysis 
 

 
 
Introduction 

In this chapter we will  

Discuss a very general method to analyze structures, to give bending moments and 

axial forces in general frame structures.  

~~~~~~~~~~~~~~~~~~~ 

The behavior of a structure can be expressed in 

matrix form as; 

 

 
 

This type of equation is 'discrete'. It represents a 

set of relationships among a finite set of degrees of 

freedom (dof). 

 

For a general structure or arbitrary shape, the 

behavior can be adequately described by 

describing the behavior of a set of points. In such a 
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case, all forces would have to be applied at the 

points and all responses would be determined at 

the points. Actions and responses at other points 

can be considered, as long as there is a way to 

gather actions to points and to interpolate 

response to  locations between points.  

 

We might define arbitrary degrees of freedom, for 

which we could write; 

 

        
 

 

But how would we find the kij  terms?  For an 

arbitrary body (a violin, a rock, a teapot ...) the kij  
terms would be hard to find. There would be no 

table of standard values.  

 

The kij  terms could be found by experiment.  

- apply a test force at dof "i", measure all 

displacements at dofs "j": 

 

 
But is it even possible to apply a force at "i" and 

only "i" ? Remember that  includes reactions as 

well as applied forces (there is no difference as far 

as the structure is concerned!)  

 

Determining   experimentally is not practical. 

The best one can do is to attempt to validate the 

 matrix experimentally by measuring responses 

and comparing to predictions.  

 

To make the determination of a structural 

stiffness matrix practical, we normally describe a 

structure using regularly shaped parts, with 

standard degrees of freedom.  
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For the 3 bar frame at left, we can define the 

define local degrees of freedom for each member 

using the same standard approach that was 

described in Chapter 11. We will start from the 

local element stiffness matrices and assemble the 

full structural global stiffness matrix, just to 

illustrate the process.  

 

The local degrees of freedom follow the individual 

members, while the global degrees of freedom are 

all aligned to the Cartesian (x-y) system.  The 

other aspect is that global degrees of freedom refer 

to nodes of a structure, rather than to ends of 

members. This means that several member ends 

can share a single set of degrees of freedom.  

 

The matrices below show the local and global 

versions of the stiffness matrix for beam 1. The 

difference is the way the degrees of freedom are 

defined. In this case the global degrees of freedom 

are just versions of the local dofs.   
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Aside: There is a general way to find the global 

stiffnesses for a rotated bar. The rotation matrix 

can be used to find the stiffness terms for a rotated 

beam.  In a rotated beam dof 1 is partly axial and 

partly shear, as is dof 2. But as 

superposition holds, any movement 

along dof 1 can be expresses as some 

axial and some shear, and the resulting 

axial and shear forces can be resolved 

back into the 1 and 2 directions.     

 

The matrix below and the matrix operation 

expresses the mix of effects in a concise way. 
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(suggestion: derive the rotation matrix using 

vector algebra). 

 

 
 

In the case of a 90 degree rotation, the rotation 

matrix has the effect of doing row-column swaps. 

For other angles the effect is more complicated.   

 

 
 

 

Beam 2 has a local [k] that is similar to beam 1 

except that area is 2A and modulus is 4I. The 

global [k] looks similar to the local [k], except that 

the numbering is shifted.    

 



E5003 – Ship Structures I  162  
© C.G.Daley   
 

 
 

Beam 3 has a local [k] that is the same as beam 1.  

The global [k] also looks similar to the global [k], 

of beam 1 because a rotation of +90 produces a 

similar effect to -90. The only change is that the 

numbering is shifted.    
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The structural stiffness matrix is just the sum of 

the global versions of the member stiffness 

matrices. Where two terms share a dof, the two 

values are added. This is again reflecting the 

simple idea of superposition in linear systems that 

Hooke first saw.  

 

Stiffness matrices are symmetrical. This is a 

curious property, especially when you think about 

the off-diagonal terms. Some of the terms refer to 

forces per unit rotation and moments per unit 

translation.  

 

With the whole stiffness matrix assembled, we 

have a single equation that relates all actions 

(forces and moments) with all movements 

(translation and rotations): 
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To solve the system of twelve by twelve equations 

we need to identify the twelve unknowns. It is 

(almost) never the case that we would know twelve 

deflections and want to know twelve forces. Nor 

would we know twelve forces and look for the 

deflections. Typically we know some forces (mostly 

zero) and some  

deflections (zero at supports): 

 

We should have some combination of unknown 

loads and deflections that adds up to twelve. If we 

don't, we can't solve the system.  

 

Note that the structure does not know what is an 

applied force and what is a reaction. All the 

structure know is whether it is in equilibrium.  

 

There are a variety of ways of solving matrix 

equations like: 

 

          
 

There are various numerical strategies used in 

linear algebra that are used to solve such systems. 
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Gaussian elimination is one common method. We 

can assume that if we have N equations in N 

unknowns that we can solve it.  

 

To solve these in Maple (see 3bar_frame.pdf or 

3bar_frame.mw), we would just expand the matrix 

expression into a set of 12 simultaneous equations; 

 

 
 

Maple will solve these equations in either 

numerical or algebraic form, giving expressions for 

all results in terms of the variable. For example, 

for this problem, Maple will give;  

 

 
 

Q1:  With the above solution for force and 

deflections at the nodes (the dofs), how would we 

find the stresses in each member?   

 

A1:  To find the stresses we have to return to the 

individual beams. We use the global stiffness 

matrix of a single member. For example, for the 

cross beam in the previous example (beam 2), we 

find the member forces as follows; 
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The forces are not the same as found above. They 

are only the forces that act on the individual 

member.    

The beam forces are found as follows: 

 

 
 

Note that there is no axial force (would be F4, F7) in 

Beam 2. This is because the roller at bottom of 

beam 3 releases all horizontal force. The applied 

load of 10 must all be transmitted to ground 

through Beam1. With these forces and moments 

we can find the shear force and bending moment 

diagrams, along with the axial, shear and bending 

stresses: 
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Because there was no load along the member, the 

maximum stresses in the above case occurred at 

the ends of the beam.  

   

Q2:  How are loads along a beam dealt with?    

 

A2:  Loads that are act between dofs are dealt 

with in three steps. In step 1, the fixed end forces 

and stresses that the loads cause are found. In 

step 2, the fixed end actions are placed on a full 

structural model and solved. All responses, 

including deflection, stresses, strains, for the full 

structure (including the beam where the loads 

acted) can be found for the whole structure.  

The complete solution comes from adding the two 

solutions (step1 + step2):  
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Topic 15: Problems 

 
1.4.  15.1 Frame Structures can be analyzed by "Matrix Structural Analysis" or by solution of  

sets of continuous differential equations. Compare and contrast these two approaches.  

1.5.   

1.6.  15.2 The stiffness matrix for a 2D beam is said to have axial, shear and rotary terms. Give 

examples of each of the 3 types of stiffness (i.e. 3 examples of the individual kij terms), with 

a sketch of the terms.   

1.7.   

1.8.  15.3  Describe what is meant by the “rotary stiffness terms” in the stiffness matrix of a 

beam. Explain which terms in the matrix are rotary terms and how they are derived.  

1.9.   

1.10.  15.4   For the 4-bar frame shown below, the 2D solution is found by solving 12 equations 

in matrix form shown beneath. For the case of the loads and boundary conditions as shown, 

fill in the 14 columns (there is 1 column for forces, 1 for displacements and 12 in the 

stiffness matrix), with any known values. In the force and displacement vectors, write in a 

zero (0) for known zero values and the letter X or variable name for other unknown values. In 

the stiffness matrix write a 0 for the zero terms and the letter K for a non-zero stiffness terms. 

You only need to fill in the upper half of the stiffness matrix. You don’t need any equations 

or numbers (other than 0).   

       
 

15.5   A 2 part frame is shown below.   
Construct the full structural stiffness matrix for the structure. Describe the steps you take to do so.  

Write the force-deflection equation for the structure in matrix format, showing all terms (ie include all 

terms in the matrices or vectors). Explain which, if any, terms are unknown. 
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15.6   Assuming that you are using a program that performs matrix structural 

analysis, explain concisely how the global stiffness terms for the joint circled in the 

sketch below are determined. You don’t have to solve this frame.  
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Topic 16 Overview of Finite Element Theory 
 

 
 

Introduction 

In this chapter we will  

introduce the 2D finite element called the constant stress triangle (cst) 

show how to derive the element stiffness and all output values from energy 

considerations 

~~~~~~~~~~~~~~~~~~~~ 

Finite element method 

 

Recall that for a beam, we can relate the end loads 

by a stiffness equation in matrix form;  

 

    xKF 
 

 

We can find the K terms for a beam by solving the 

beam bending equation for various end 

movements. To find the displacement of some 

point along the beam (at x ) we could solve the 

system for the displaced shape. We would find that 

the displacements would be; 

 

)( 141 ddxddx                  (why so simple?) 

and 

),,,( 6532 dddxfddy       (why is this 

more complex?) 
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For this beam element, we made use of what is 

called ‘beam theory’, to solve for the loads and 

deflections under certain loading conditions.   

 

However, in the case of most finite elements, such 

as 2D planar elements, plate elements, and solid 

elements, we will not start from some general 

analytical solution of a loaded membrane, plate or 

solid. These solutions are too complex and will not 

give practical results. Instead, we assume some 

very simple behaviors, highly idealized, but which 

satisfy the basic requirements for equilibrium (i.e. 

forces balance, energy is conserved). With this 

approach, the single element does not really model 

the behavior or a comparable real solid object of 

the same shape. This is ok, because the aggregate 

behavior of a set of these simple elements will 

model the behavior quite well. This is something 

like modeling a smooth curve as a series of 

straight lines (even horizontal steps). This is 

locally wrong, but overall quite accurate.  

 

 

Constant Stress Triangle 

 

To illustrate the way that finite elements are 

formulated, we will derive the full description of 

an element called the constant stress triangle (cst). 

This is a standard 2D element that is available in 

most finite element models.  

Consider a 2D element which is only able to take 

in-plane stress. The three corners of the triangle 

can only move in the plane.  

 

For this element the force balance is; 

   eKF   
    166616 xxx   
 

We want to determine the element stiffness matrix 

Ke , and we want it to be valid for any triangle; 

 

So, while we have six degrees of freedom, as we 

did in the beam case, we don't have any hand 

analytical solutions. To create a general solution 
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that will apply to all triangles we will make some 

very simple assumptions which will allow us to 

model 2D stress problems (such as a web in shear, 

or stresses in plane around a cutout in a web. .  

 

We will follow the outline in Hughes (p. 245-253). 

 

Step 1 - select a suitable displacement function. 

 

Consider the movement of a general triangle. Each 

corner moves differently, and every point inside 

moves.  

 

The movement in x is defined as u and the 

movement is y is defined a v. Both u and v 

are functions of x and y ; 
 

  

  

 

  

  

 

Assuming that the material in the triangle is 

isotropic (no preferred direction), then we 

would expect the two displacement functions  

 and  to look similar.  

 

The functions for u and v can only depend on the 6 

nodal displacements (that all the info that we have 

to define movement), so we can have no more than 

6 unknown coefficients for both functions.   

 

A trial function; 

a) lets try:    

 

is this ok?  No! Why?  Because it means that at 

(0,0) (the origin) there is no movement. It would be 

as if all elements are pinned to the origin.  

 

b) lets try:    

 

is this ok?  No! Why?  same problem. 
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The simplest viable functions for u and v that has 

6 coefficients is; 

 

 
 

Occam's razor,  in latin: "lex parsimoniae " (the 

law of simple), is a principle that says: from among 

alternative explanations, the one that works, but 

makes the fewest new assumptions is usually 

correct. The concept is central to rational thought. 

William Occam was a 14th century English Friar 

and writer. 

   

This provides a very simple but viable general 

description of the displacement field. We can re-

write the displacement function in matrix form; 

 

 
 

Now we have the displacement function. 

 

Step 2 -  Find the constants in C 
at the corners we can write; 

 
 

 
 

 
 

The total displacement of the corners can be 

written; 
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or 

 
A is called the connectivity matrix. It contains the 

geometric information, the coordinates of the 

nodes of the triangle.  The terms in the C vector 

can be found; 

 
 

  is a 6x6 matrix; 

 

 
 

where  is the determinant of the 3x3 

coordinate matrix; 

 

 
where: 

   

 

which happens to be 2x the area of the triangle (ie  
 is the area of the triangle). 

 

We can now go back to; 

 

 
 

which we can re-write as; 

 

 
 

where  is the displacement of any point in 

the triangle,   contains information on the 

geometry of the triangle and  contains the 
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displacements of the corner nodes of the triangle. 

This lets of find the displacement anywhere by 

just tracking the displacements of the nodes. 

Remember that the finite element method lets us 

model a continuum by modeling a discrete system 

of connected nodes.  

 

 

 

Step 3 -  Find the strain in the element    

 

We need to find the stress and strain in the 

element so that we can determine the stiffness of 

the element.  

The (2D) strains at any point in the element have 

3 components; 

 

 
 

where the strains are found from the partial 

derivatives of the displacement field: 

 

 
 

 
 

 
recall that;  

 

 
 

so that we have; 
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which allows us to write; 

 
Note that the strains in the triangle are just 

constants, and do not vary with x and y.  This is 

the reason that this element is called the CST or 

constant stress triangle.  

We can write the strains in matrix form; 

 
and simplified to be; 

 
 

We can substitute for C  to get; 

 

 
 

This is the strain fully described in terms of nodal 

coordinates and nodal displacements. We can 

collect terms; 

 
 

where B is called the strain coefficient matrix, and 

so write; 

 
 

G is a 3x6 matrix. A-1 is a 6x6, so B is a 3x6 matrix 

that relates the 3 strains to the 6 nodal 

displacements. 

 

Step 4 - Find the element stresses (and forces) 

 

Start by defining the stresses; 
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We can write Hooke's law in matrix form as; 

 

 
 

or in terms of stress; 

 

 
In simpler form we write the stresses as; 

 

 
 

where D is called the elasticity matrix. Now we 

can use  to let us write;  

 

 
or 

 
 

where and is called the stress matrix. 

 

Step 5 - Obtain the Element Stiffness Matrix 

 

Idea: To obtain the element stiffness we will use 

the principle of virtual work. The principle of 

virtual work states that for a body in equilibrium, 

the virtual work done by real forces fi acting 

through any viable pattern of virtual 

displacements * will be zero. In our case we wish 

to equate the work done by the real nodal forces 

with the work done to distort the element.      
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The external work done for a set of 6 virtual 

displacements will be; 

 

 
or  

 
Note that, for example, f3 only does work when 3* 

moves. And the work is the full amount of, f3 3*, 

as f3 is fully active during the whole of 3* . 

Remember that f3 does not cause 3*. We just 

imagine that 3* occurs even as the nodal forces 

stay acting.  

 

The internal work done is equal to the integral of 

the stress time the strain over the volume; 

    

 
 

which in the case of the virtual work  done one 

element becomes; 

 

 
 

which when making use of the strain coefficient 

matrix and the elasticity matrix can be written as; 

 

 
 

In this equation  refers to virtual displacements , 

while  refers to real (existing) displacements.  

 

 
 

So if we say;  
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we can obtain; 

 
 

which simplifies to; 

 
and; 

 
where t is the element thickness and  is the 

element area. The term in the brackets is the 

element stiffness; 

 
 

 is a 6x6  matrix (  is 6x3  x  3x3  x 3x6  = 

6x6) 

 

Numerical Example: Consider this triangular 

element with properties shown.  

 

For this case the matrices are; 
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This is the stiffness matrix for a specific CST 

element. 
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Topic 16: Problems 

 

16.1  The displacement functions of the constant stress triangular element are:   

      u(x,y) = C1 + C2 x + C3 y 

     v(x,y) = C4 + C5 x + C6 y 

 

where u represents the x-translation of any point (x,y) and v represents the y-

translation of the point.  

 

16.2  A beam has only one coordinate (x). However, most beam models would allow 

a point on the beam to rotate as well as translate. So, construct 3 simple 

displacement functions; 

u(x),  

v(x),  

(x), 

of a ‘beam element’, using the same logic as was used to create the displacement 

functions of the constant stress triangular element.  
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Topic 17: Hull Girder Shear Stresses 
 

 

 

 
Italian Stone  
 

Introduction 

In this Chapter we will  

Examine vertical shear in a ship 

Describe the idea of shear flow. 

~~~~~~~~~~~~~~ 

 

Ships are made of steel plate. This means that 

ships are thin walled shells. Even for the local 

components such as individual frames the width of 

a plate is much greater than its thickness; 

 

  

 

Overall, the cross section of a ship contains long 

sections of connected plate. Such sections transfer 

shear very effectively. Ships are generally very 

stiff in shear, and need to be.   

 

We wish to be able to determine the shear forces 

and stresses everywhere in the cross section of a 

ship. We will  start by examining the shear that is 

associated with  the vertical bending stress. In a 

later chapter we will examine torsion.  
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Recall from beam theory that shear is the slope of 

the bending moment:     

 

 
 

 
 

There is significant shear is a ship. How is it 

distributed in the cross section?  Shear is not just 

in the vertical plates. There is shear in all parts of 

the vessel.  The average shear stress can be found 

by dividing the shear force by the cross-section 

area;  

 

 
 

How is Q distributed around the x-section of the 

ship? Is the shear stress uniform? Is it only in 

vertically oriented members?  To find the pattern 

of stress, we construct  a free body diagram of a 

part of a slice of the ship's cross section.  

 

To find the shear on the cross section, we cut the 

section longitudinally and note that the shear 

stress on the cut must be the same as the shear 

stress on the cross section at that point.  We can 

assume; 

   

there is no shear on the centerline 

the shear force on the cut is  

 

We find the force on the cut by integrating all 

horizontal forces on out slice atarting from the 

centerline (keel). We integrate along the shell 

plating, using the path variable 's'.   
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Define: 

 
 

m : 1st moment of area, about the neutral axis, of 

all the material from the start to the cut at S 

(where  is determined)  

 

 

 

 

Define: 

 
 

The units of shear flow is N/m.   

There is an analogy between shear flow and fluid 

flow. At an abrupt change in section, the shear 

flow remains constant, while the stress abruptly 

changes. This is analogous to water flow where at 

a change in pipe size the mass flow rate (kg/s) 

would stay constant while the velocity would 

abruptly change.  

 

 

 

We can combine the above concepts into one 

equation;  
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Shear Flow Example 1: a rectangular steel bar 

subject to a shear force Q.  

 

 
 

 
 

 

Summary:  

 

Shear flow acts along the cross section of a plate. 

There can be no significant shear across a thin 

plate, because there is no shear on the inner and 

outer surfaces.  The shear flow is found by 

determining the value of 'm'  (a path integral)  

along with Q (the total shear force) and I (the 

moment of inertia);   
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Example 2: Shear Flow in a simple box-girder. 

 

Consider the simple box girder with the 

dimensions as show below. This is like a simple 

barge without the frames. The overall vertical 

shear Q is 20 MN.  To find the pattern of shear 

flow and then the shear stresses we first calculate 

the location of the neutral axis, and I.  

  

g and h are the distances from the deck and 

bottom to the neutral axis; 

 

 
 

 
 

 
 

The moment of inertia about the base can be 

approximated by; 

  

 

 
 

The moment of inertia about the neutral axis is; 

 

  (whole ship)  

 

Now we can determine m 

 
 

Next we find m. We will start at the centerline on 

the bottom, where s1  starts; 
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Next we find m on the side shell,  The initial value 

for the side is the same as the final value for the 

bottom. The shear flow continues around the 

corner. We integrate along s2  (note: y = h - s2 ) ; 
 

 
 

 

 
 

This is a quadratic equation in s2. To find the 

location of the maximum value, we set its 

derivative to zero; 

 

 

 
This shows that the maximum shear flow is 

occurring at the neutral axis; 

 

 
 

Continuing the integral to the deck gives; 

 
 

Next we continue the integral along the deck, 

along s3, to the centerline; 

 
 

 

 
 

With the shear force of 20 MN (about 2000 tonnes) 

The maximum shear stress is; 
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Branching Shear: 

 

At a T junction, the shear flow branches. As long 

as there are no closed loops between the points of 

zero shear (ie. pts A, B and C in the sketch at left) 

the shear flow can be found easily. Such situations 

are statically determinate. 
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Topic 17: Problems 

 

17.1 An open section is shown below. This is the cross section of a long folded steel 

plate. The cross section is subject to a shear force of 2 MN 

 

Solve the shear flow, plot it and then also show the shear stress values.  

If this is a section of a long cantilever (fixed at one end and free at the other) 

explain what types of deformations would you expect to see.  

 

 
 

17.2   An open section is shown below. This is the cross section of transverse frame 

in a ship. The shear force of 200kN.   

Solve the shear flow, plot it and then also show the shear stress values.  

The web is welded to the shell plate. What shear force must be resisted at this joint?  
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Topic 18: Shear Stresses in multi-cell sections 

 

Croatian Coast  
 

Introduction 

In this Chapter we will  

Discuss indeterminate shear flow 

Calculate shear slip in a cut section. 

Do an example of shear flow in a ship 

~~~~~~~~~~~~~~~~~~~~ 
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Shear in Multi-cell Sections 

 

Consider a tanker with two longitudinal 

bulkheads; 

 

 
 

There will likely be two spots in the cell where 

m=0.  The shear flow will look something like the 

sketch to the left.  

 

To solve the statically indeterminate problem, we 

apply the same kind of technique that we used in 

the Force Method to solve indeterminate beams.  

 

We will cut the structure, releasing the shear force 

and allowing shear deflection (called 'slip'). We will 

then determine how much shear we have to apply 

to the cell to remove the slip.  

 

This is qualitatively similar to the correction of 

movements in the force method.  

 

For any case where the loops are not adjacent, the 

steps in the solution process are; 

 

1) Make n cuts to make the problem into a 

statically determinate problem. 

2) Solve the statically determinate problem. 

3) Find the N incompatible deflections (slips). 
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4) Apply N internal forces (actually torsions) to 

reverse the incompatible deflections 

5) Add #2 and #4(s) to get the solution  

The above steps are sketched below; 

 

 
 

The cuts and the slip at the cuts are in the 

longitudinal direction; 

 

 

        

 
 

The shear flow occurs on the cross section, which 

is a transverse vertical plane. The shear stresses 

on this plane will also occur on a longitudinal 

plane at right angles to the transverse plane. The 

longitudinal plane may be horizontal or vertical or 

inclined.  The stressed plate will respond to the 

shear by distorting into a 'diamond' with relative 
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movement in the longitudinal direction, which 

creates a differential slip over a small part of the 

cross section.  

 

 
 

 

The total slip is found by integrating the slip over 

the whole loop from one side of a cut to the other.  

If the loop is symmetrical , the fore and aft slip 

will cancel out and result in no slip.  In an 

unsymmetrical section there is a net slip.  

 

 
 

s = the path variable (length) around any loop 

 shear strain   

 = a cyclic or loop integral 

 

The slip can be found from the shear flow; 

 

 
 

To correct the slip in a cut loop, we impose a 

correcting shear flow  , such that;  

  

 
 

  is a constant so we can find it as; 

 

 
  is constant around the loop and zero elsewhere.  

 is a determiate solution, found in the usual way. 

The total solution is; 
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E5003 – Ship Structures I  199  
© C.G.Daley   
 

 

Shear Flow Example #2 

 

Find the shear stresses in the section below. The 

total shear is 10MN (5 MN on the half section.  

 

First we find the section properties: 
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The centroid and moment of inertias are (for half 

section) ;  
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The shear flow and stress in the half section can 

be found from; 

  

 

 
 

 
 

where 

 
So to find , we just need to find m. To find m we 

need to integrate along the 5 branches of the 

problem. 

 

Because we have a loop, the problem is 

indeterminate and we need to cut the loop, find 

the slip and add a correcting shear flow. 

 

 

The solution to the cut problem is called q*. The 

correcting flow is called qc.  

  

For s1 (along deck); 

 
y = 10 - 5.48 = 4.52, y t = 0.1357 

m = .1357 s1 

    = 0.814 (@ s1 = 6) 

    = 1.357  (@ s1 = 10) 

 

For s2 (side shell above wing tank); 

 
y = 4.52 - s2 ,  

m = 1.357 + .03 (4.52 s2 -  s2
2 / 2 ) 

    = 1.357 + .1357 s2 - .015 s2
2 

    = 1.658  (@ s2 = 4) ( at wing tank plate) 
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For s3 (inclined plate of wing tank); 

 
y = 4.52 - s3/2 ,  s3 = 0 -> 42  

m =  .03 (4.52 s3 -  s3
2 / 22 ) 

    =  .1357 s3 - .0106 s3
2 

    = .428  (@ s3 = 42) ( at side shell) 

 

For s4 (side shell below wing tank); 

 
y = 0.52 - s4 , s4 = 0 -> 6  

m =  2.086+ .03 (0.52 s4 -  s4
2 / 2 ) 

    =  2.086 + .0156 s4 - .015 s4
2 

    = 1.64  (@ s4 = 6) ( at bottom) 

    =  2.09  (@ s4 = .52) (max value at n.a.) 

 

For s5 (along bottom); 

 
y = -5.48 , s5 = 0 -> 10  

m =  1.64 - .164 s5  

    = 0  (@ s5 = 10) ( at centerline)   ok 

 

 

Now we can calculate the corrective shear needed 

to close the slip that occurs at the wing tank cut;  

 

 
 

 
 

  is a constant so we can find it as; 

 

 
 

In this case t is a constant so; 
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where S is the length around the loop. S = 8 + 42. 

We can use the definition of shear flow to get; 

 

 

 
 

m*deck = .814 +.1357 s 

m*side = 1.357 + .03 (4.52 s2 -  s2
2 / 2 ) 

m*wt =  .03 (4.52 s3 -  s3
2 / 22 ) 

  

  

  

               = 4.34 + 6.188 - 1.53 

               = 9.00 

Note that the m*wt part is subtracted beacuse we 

are integrating in the reverse direction. With m* 

we can calculate qC;  

 

qC = -0.1736 [MN/m] 

 

We have m* and qC.  

 

q = q* ± qC = 0.2364 m* ± qC 

 

We can plot q* (solid lines) and q (dashed lines); 

 

 

 

 

 

 

 

 

and we can plot the shear stress ;  
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The values of shear stress have been checked 

against an ANSYS model, and show good, though 

not perfect, agreement. A sketch of the ANSYS 

model is shown below. 

 

 
 

See next page for ANSYS results.  

  

 



E5003 – Ship Structures I  204  
© C.G.Daley   
 

 
image from ANSYS 
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image from ANSYS Workbench   
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Topic 18: Problems 

 

18.1  Solve the shear flow in the following section of a tanker. Ignore the radius of 

the bilge. 

 

 
 

 

18.2  Solve the shear flow in the following section of a tanker.  

 

 
18.3  Solve the shear flow in the following section of a tanker.  
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18.1  Solve the shear flow in the following frame section. What are the shear forces 

transferred through the welds in details A and B (in kN/m)?  
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Topic 19: Shear Flow in adjacent Closed Cells 
 

 
 

 

In a double sided or double bottom vessel there are 

often many adjacent closed cells. Adjacent close 

cells present an added complexity when solving 

shear flow. The complexity is that the corrective 

shear flow in once cell causes a corrective slip in 

the adjacent cell, because of the common side.    

 

 
 

When we add a corrective shear flow in one loop 

we can't help but get some flow and slip in 

adjacent loops.  

 

Consequently, in order to ensure that we have no 

net slip at each and all cuts we need to satisfy a 

set of coupled equations. For example, in the case 

of two adjacent loops we have; 
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 and  are unknown constants.  is the 

determinate shear flow in the cut section. For N 

adjacent closed cells, we have to solve N 

simultaneous equations.    

 

 

Topic 19: Problems 

 

19.1   Solve the shear flow in the following section of a tanker. Ignore the radius of 

the bilge. 

 

 
 

19.2   Solve the shear flow in the following section of a tanker.  

 

 
 

19.3   Solve the shear flow in the following section of a tanker.  
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Topic 20: Torsion in ships 

 
 

 

Ships as a whole and many individual members 

within ships experience torsion.  

 

 

 
 

 

 

The overall design torsional moment is given in 

various classification society rules; 
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Local structural torsion can be found throughout 

ships. Bending of a frame can result in a torsion in 

a supporting frame.  

 

 

 

 

Torsion Review 

 

Consider a solid circular shaft subject to a 

torsional moment. The longitudinal axis of the 

cylinder x axis. A torsion is a moment about the x 

axis. In such a case we get an ideal torsional 

response. Every circular cross section remains 

plane and remains centered on the x axis. Each 

plane rotates slightly in comparison to its 

neighboring cross sections.  Assume that two 

planes (1 and 2) are separated by a distance dx.  In 

comparison to their original orientations, the 

planes are rotated  

 
 

 
or 

 

 

note similarity to the deq. for bending:   

 

For solid sections like the circular shaft shown at 

left, the shear stress is; 

 

 
 

 
 

 

 

 

Thin Walled Torsion 



E5003 – Ship Structures I  213  
© C.G.Daley   
 

 

Torsion in thin walled sections differs greatly 

between ‘open’ and ‘closed’ sections.  

 

To examine the difference between open and 

closed sections we first make some simplifying 

assumptions; 

 

sections are prismatic 

no in-plane deformation (cross sections only rotate) 

small out of plane deformations (warping) 

 

 

 

Thin Walled Torsion – Open Sections 

 

Consider an open section, built-in at its base and 

subject to a torsion at the free end.  

 

 
 

The section rotates about a point called the shear 

center.  Point ‘p’ moves in the y and z direction due 

to rotation and in the x direction due to ‘warpage’.  

 

The displacements of point ‘p’  

 

 
 

 
 

 

 

 

For ideal open sections with no warping restraint; 
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J = St. Venant torsional constant 

 

For an open section; 

 
 

For example, for a pipe of thickness t, radius r, cut 

longitudinally; 

 
 

 
 

 
 

 

Thin Walled Torsion – Closed Sections 

 

Closed sections carry torsion in an entirely 

different way from open sections. Because the loop 

is closed, shear can flow around the loop. The 

shear stress is uniform over the full thickness of 

the wall. The shear flow is also constant over the 

full loop.  Once again; 

 
 

We can also write; 

 

 

 

 
As q is constant we can write; 
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where; 

A = enclosed area of the loop 

 

For a pipe (a circle); 

 
 

Using the general formula for torsion; 

 

 
 

We can use this to find  

 

 
 

Compare this to ; 

 

 
 

For example, consider a pipe of 1m dia., with a 

10mm wall thickness; 

 

 
 

 
 

 
 

The difference is so dramatic that it is easily 

illustrated by seeing what happens when a 

cardboard tube (eg paper coffee cup) is cut open 

longitudinally.  

 

 

 

Thin Walled Torsion – warpage restraint 
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Warpage is the term to describe axial 

displacements due to torsion. In a closed circular 

section the axial symmetry prevents all warpage. 

In an open circular section, the warpage is 

unrestrained (ie. The section is free to warp), so no 

warpage stresses arise.  

 

In sections with corners such as a box section, the 

twist of one face is, to a degree, incompatible with 

the twist of the connecting face. Each face wants to 

warp differently, but is constrained at the corner. 

This results in stresses on both faces. The 

treatment of these effects requires the use of 

warpage functions. This topic will not be 

considered any further here. We will limit our 

attention to simple torsion theory.  
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Topic 20: Problems 

 

20.1   A hollow closed section is made of plate of uniform thickness ‘t’ . A torsional 

moment of 80 MN-m is applied. To have the maximum shear stress equal to 135 

MPa, what value should t be? 
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Topic 21: Shear Center and Shear Lag in Ship Structures 
 

 
Topsides supports on an FPSO 

Introduction 

In this Chapter we will  

Discuss the idea of the shear center of a frame 

Describe the idea of shear lag and the notion of effective width. 
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Consider a channel section. A channel is a common 

structural profile, but one that is asymmetric on 

one axis. The center of area (centroid) and the 

‘shear center’ are not at the same location.   

 

What is the centroid? For one thing, it is a 

property of the cross sectional area. But what does 

it mean for the channel section?  If we were to 

want to use the section as a column and apply an 

axial force that would only compress (and not 

bend) the column, we would apply the force at the 

centroid ‘g’.  This is because a uniform stress in 

the cross section would have a ‘center of force’ at 

‘g’.  

 

To find ‘g’ we use the standard formulations; 

  

 
 

If the end of the column had an end cap, the load 

would naturally find its way to the centroid.  

 

 

However if the end were connected with a bold 

through the web, the load would be applied off the 

centroid and the axial load would cause bending. 

In this case the end load would not only cause 

bending, but the bending deflection would increase 

the moment arm to further increase the bending. 

This is a kind of self-excited response called the   

p-delta effect, and is the subject of a special 

analysis.  

 

 The above discussion is about axial loads. What is 

the connection to shear? The connection is the idea 

of the shear center. When a load is applied at the 

shear center of a beam, the load will only cause 

shear and bending, and no torsion. If the load is 

applied anywhere else, a torsion will result.  
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Consider a shear force Q =10000 N applied to the 

channel section on the previous page.  

 

 

 
 

We will need Q/I; 

 
Now we find the values of m. On the top flange; 

 

 
 

 
So at B; 

 
 

The force on the top flange is; 

 

 

 

 
 

In the web; 

 

 

 
The force on the web is; 
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The lower flange is symmetrical with the upper 

and will have a shear flow of the same magnitude 

but opposite in direction.  

 

 

 

The shear flow as drawn shows the directions of 

shear in the direction of the applied force. If we 

think instead of the reaction to the applied force, 

we have the sketch at left. 

 

In this case the applied force is shown pushing 

directly down on the web. In this case the vertical 

forces oppose each other and produce no moment. 

However, the horizontal forces, while equal in 

magnitude, are separated by 190mm and produce 

a couple of 1879 x 190 = 355300 N-mm.  This couple 

is a torsion acting on the section.  

 

In order to eliminate the torsion, we would need to 

apply the load Q at the shear center ‘e’ to the left 

of the web. We can find the location of ‘e’ as 

follows; 

 

 
 

General formula for shear centers of channels 

 

The following derivation is only valid for 

symmetrical channels with constant wall 

thickness. 

 

 
 

 
 

 

 
 

The force in the top flange; 
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Now we can find ‘e’ by setting the sum of the 

torsional moments to zero. The flange forces create 

one couple and the applied load, opposed by the 

reaction in the web, creates another couple. The 

two couples will sum to zero when the load is 

applied at the shear center. 

 

 
 

 
 

 
 

 
 

For the previous example  

 

 
 

 
 

(Q? – why would there be a slight difference 

between the above result and the previous 

example? ) 

 

 

Shear Lab / Effective Width  

 

We normally assume that bending in a frame of a 

ship or the hull girder can be modeled with what 

we call ‘simple beam theory’. This means that we 

assume that as the beam bends, plane sections 

remain plane. When we make this assumption, we 
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are implicitly assuming that the flange is 

uniformly compressed (or stretched), and that the 

compressive or tensile stresses are uniform in the 

flanges. Recall that ‘standard’ formula; 

 

 
 

This formula says that all stresses at the same 

value of y will be the same (i.e. all stresses in the 

flange are the same!).  

 

While the simple beam assumption is ok for beams 

with relatively narrow flanges, the assumption is 

not valid for sections with wide flanges such as are 

sometimes found in ships.  

 

 
 

In the case of very wide flanges, the compressive 

stresses drop off away from the web.  

 

 
 

To find the true pattern of flexural stress in a wide 

flange beam, and the consequent effective width, is 

a complex analysis, easily done in a finite element 

model, but difficult to obtain analytically. The idea 

of the behavior is presented below. 

 

When we a lateral load (a bending load) to a beam 

or ship frame, the web carries the load and tends 
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to bend. The flange is attached at the edges of the 

web and as the web bends, its edge shortens (or 

lengthens) and tends to pull the flange with it. To 

pull on the flange, a shear stress of applied to the 

edge of the flange. As shown in the sketch, the 

flange is acted upon along its edge. Its as if the 

flange is pinched along its edge, causing the flange 

to compress more near the web and less away from 

the web.  

 

 
 

 

Unfortunately there are no general analytical 

solutions for shear lag and effective width. Certain 

approximate solutions have been postulated (see 

PNA, VI, pp 247-250)  

 

Shear lag and diminished effective width are most 

important in cases of ; 

wide flanges (large b) 

short frames (small L/b) 

proximity to free ends 

proximity to concentrated loads 

 

Finite element programs, when shell or brick 

elements are used to model the frames, will 

naturally show the shear lag effects.  

There have been experiments on hull girder 

models that have shown not only a variation in 

deck stresses, but actual stress reversals. This 

means that even when the average deck stress is 

compressive, there may be a part of the deck (at 

center) where the stresses are tensile, with the 

deck edges in exaggerated compression. (PNA p 

250) 
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Classification society rules have various 

approaches to account for effective width. We will 

consider deck plate buckling in the next ship 

structures course (6003). In that case we will 

consider another type of effective width of plating, 

but one that describes a buckled plate’s reserve 

capacity.  

 

 

ANSYS analysis results  
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Topic 21: Problems 

 

21.1 The following figure shows 4 x-sections. Identify the location of the shear 

center in each case (i.e. which letter?). You should sketch the shear flow to help 

identify the location.   

 

 
 

21.2  When the vertical force F is applied to this section, how will the cantilever 

beam deform? Explain  

 
21.3  Where is the shear center of a 300 x 150 x 15fl x 10w mm ? 
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Topic 22: Plate Bending 
 

 
Wexford Ireland 

 

Introduction 

In this chapter we will  

Discuss the mechanics of plate bending 

~~~~~~~~~~~~~~~~~~~~ 
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Plates are the essential structural components in 

ships. Almost all the structural weight in ships is 

from the shell plating, the bulkheads, decks and 

webs of large frames.  

 

This section will examine the lateral deformation 

of a single plate panel subject to a uniform 

pressure. We will limit our problem as follows; 

rectangular plate 

constant thickness (t<<a, b) 

simple edge conditions (fixed, pinned, free) 

linear elastic material behavior 

steel material (isotropic, homogeneous) 

pressure normal to surface 

no membrane stresses (no in-plane stress) 
 

 

 
 

 

Recall that with beams we describe the 

deformation and strains as follows; 
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Plates can bend in 3 ways; 

x-bending 

y-bending 

twist 

 

X and y bending are similar to beam bending.  

 

Recall that there are no membrane stresses, 

therefor no x and y stresses at the mid-plane. 

Stresses only arise from bending, and are equal, 

opposite and maximum on the bottom and top of 

the plate.    

 

Twist is a behavior that does not occur in beams, 

although it is something like torsion.  

 

Twist causes a shear strain in the top (and bottom) 

of the plate, and results in curvature on  

diagonals.  When we twist a dx x dy portion of a 

plate we get;  

 

 
therefore 

 

 
 

The above equation can be stated as; 

  the change in x-slope with change in y 

= the change in y-slope with change in x 
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What about the curvature on  diagonals? 

 

 
 

 
 

 

Consider a view of the plate normal to the  

diagonal.  

 

 
 

 
 

 
 

We now have a variety of relationships for 

deflection, curvature and strain.  

 

The x direction movement 'u' is the result of 

bending deflection w in the y direction.  

 
 

 

We can find the strain from derivatives of the 

movement;  

 
 

In the y direction the movement is called 'v'; 

 

 
 

 
 

 

 



E5003 – Ship Structures I  232  
© C.G.Daley   
 

When u and v vary in x and y we can get shear 

strains.  

 
 

 

 

 

 

CONCEPT: displacement field 

 

In solid mechanics it is useful to describe how all 

points move relative to their original positions as a 

'displacement field'. In the example below we just 

consider how points along an x axis move. We call 

the movement in the x direction u. A point at some 

original position  moves to a displaced position 

. The displacement . we describe  as 

a function of , or . We could also write this as  

 because we think of the displacement as 

dependent on the original position.  

If all points move the same amount, then 

.  In such case the derivative of the 

displacement field is zero and there is no strain 

anywhere. We call this 'rigid body movement'. If 

the movement is a linear function of the  

coordinate, (such as  ) then the 

derivative of the displacement field is  and the 

strain is  everywhere.  The sketch below 

illustrates the concept. The concept can be 

extended to 2D and 3D problems.  
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ANSYS analysis results  

 

For 

 
we can use our definitions of u and v to get; 
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or 

 

 
 

 
 

We can use the 2D version of Hooke's Law to get 

the stresses. 

 

 
 

 
 

Clearly when z = 0 (middle of plate), all stresses 

vanish. Also, there are no average in-plane 

stresses, only bending moments and torsion.   

 

 
 

 
 

 
By using the expressions for  ,  and  we can 

write; 
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where 

 
 

The derivation of these equations is as follows;  

 

 
 

 

 
 

So far we have expressions for stress and strain (2 

axial and shear) and for moments (2 bending and 

torsion) expressed as the derivatives of the 

deflection w. 

 

We now want to derive the differential equation 

relating the deflection to load. The load is a 

pressure acting normal to the plate. Consider a 

small section of the plate subject to a uniform 

pressure p. 

  

Summing the vertical forces ; 
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Summing moments about x axis (about center of 

plate) ; 

 
 

 
 

now divide by dy; 

 
and by dx; 

 
which gives; 

 
Using the previous expressions for  and  we 

can write; 

 

 
 

 
 

 
 

 
Similarly; 

 
 

Now, using  

 
we can write; 
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which simplifies to; 

 

 
 

and can be written in the short hand got a general 

4th derivative in 2 dimensions; 

 

 
 

Note the similarity to the differential equation for 

a beam of . Now we need to solve 

 for the appropriate boundary conditions 

to get w(x,y) and the other results (stress, moments 

etc.) 

 

Example #1: 

A long plate, simply supported with a pressure in 

the shape of a half sine wave. 

 

 
Check the pressure equation; 
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Note that nothing varies along the x axis, so all 

derivatives of x are zero. Therefore, the differential 

equation becomes; 

 

 
 

assume the solution has the form; 

 

 
so  

 

 
 

which becomes; 

 

 
 

and lets us solve for C; 

 

 
 

which gives the deflection as; 

 

 
with  

 
 

The stress can be found using; 

 

 
 

which simplifies to; 
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The stress at the top of the plate ,  @ z = t/2 ; 

  

 
 

The stress as the edge is; 

 

 
 

The stress in the center is; 

 

 
 

Similarly, we can find; 

 

 
 

General Plate Problems 

 

The solution for a general plate problem requires 

the solution of the 4th order partial differential 

equation; 

 

 
 

Such solutions can be complex, even for simple 

load patterns. Even in the case; 

 

 
 

The solution is found by expressing the load as a 

Fourier equation; 
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where  

 
 

 
 

For this load pattern and simply supported edges, 

the deflected shape can be derived as; 

  

 
Note that a sine pattern of load has been shown to 

produce a sine pattern of response. So a group of 

sine shaped loads will produce a group of sine 

shaped responses. Hence the Fourier approach 

should work. It all depends on the elegance of 

super-position (hurray for Hooke!) 

 

We will leave the general solution of more complex 

problems to a specialized course in palates and 

shells. See Hughes for solutions to some typical 

problems. 
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Topic 22: Problems 
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Appendix  
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Typical spreadsheet to solve Moment Distribution problems. 

Moment Distribution Method
table of  values

param. value units
L1 10 m 
L2 20 m
L3 20 m 
L4 12.5 m
EI1 1 rel
EI2 1 rel
EI3 1 rel
EI4 1 rel
w 8 kN/ m

e12 e21 e23 e24 e42 e32 e35 e53
 1 .0 0 .5 0 .250 0.250 0.0 0 .3846 0.6154 0 .0
FEM -66.7 66.7 -266.7 0 .0 0 .0 266.7 0 .0 0 .0
net 66.7 200.0 0 .0 -266.7 0 .0
dist 66.7 100 .0 50 .0 50 .0 0 .0 -102.6 -164.1 0 .0
CO 50.0 33.3 -51 .3 0 .0 25.0 25.0 0 .0 -82.1
eEM 50.0 200.0 -267.9 50 .0 25.0 189.1 -164.1 -82.1
net -50 .0 17 .9 -25.0 -25.0 82.1
dist -50 .0 9.0 4.5 4.5 0 .0 -9.6 -15.4 0 .0
CO 4.5 -25.0 -4.8 0 .0 2.2 2.2 0 .0 -7 .7
eEM 4.5 184.0 -268.3 54.5 27.2 181 .7 -179.5 -89.7
net -4.5 29.8 -27.2 -2.2 89.7
dist -4.5 14.9 7.5 7.5 0 .0 -0 .9 -1 .4 0 .0
CO 7.5 -2.2 -0 .4 0 .0 3.7 3.7 0 .0 -0 .7eEM 7.5 196.6 -261 .2 61 .9 31 .0 184.6 -180 .9 -90 .4net -7 .5 2.7 -31 .0 -3.7 90 .4dist -7 .5 1 .3 0 .7 0 .7 0 .0 -1 .4 -2.3 0 .0CO 0.7 -3.7 -0 .7 0 .0 0 .3 0 .3 0 .0 -1 .1eEM 0.7 194.2 -261 .3 62.6 31 .3 183.5 -183.2 -91 .6net -0 .7 4.4 -31 .3 -0 .3 91 .6dist -0 .7 2.2 1 .1 1 .1 0 .0 -0 .1 -0 .2 0 .0CO 1 .1 -0 .3 -0 .1 0 .0 0 .6 0 .6 0 .0 -0 .1eEM 1 .1 196.1 -260 .3 63.7 31 .9 183.9 -183.4 -91 .7net -1 .1 0 .4 -31 .9 -0 .6 91 .7dist -1 .1 0 .2 0 .1 0 .1 0 .0 -0 .2 -0 .3 0 .0CO 0.1 -0 .6 -0 .1 0 .0 0 .0 0 .0 0 .0 -0 .2eEM 0.1 195.8 -260.3 63.8 31 .9 183.8 -183.7 -91 .9net -0 .1 0 .7 -31 .9 0 .0 91 .9dist -0 .1 0 .3 0 .2 0 .2 0 .0 0 .0 0 .0 0 .0CO 0.2 0 .0 0 .0 0 .0 0 .1 0 .1 0 .0 0 .0eEM 0.2 196.1 -260 .1 64.0 32.0 183.8 -183.7 -91 .9net -0 .2 0 .1 -32.0 -0 .1 91 .9dist -0 .2 0 .0 0 .0 0 .0 0 .0 0 .0 -0 .1 0 .0CO 0 .0 -0 .1 0 .0 0 .0 0 .0 0 .0 0 .0 0 .0eEM 0.0 196.0 -260.1 64.0 32.0 183.8 -183.8 -91 .9net 0 .0 0 .1 -32.0 0 .0 91 .9dist 0 .0 0 .0 0 .0 0 .0 0 .0 0 .0 0 .0 0 .0CO 0.0 0 .0 0 .0 0 .0 0 .0 0 .0 0 .0 0 .0eEM 0.0 196.0 -260.1 64.0 32.0 183.8 -183.8 -91 .9net 0 .0 0 .0 -32.0 0 .0 91 .9dist 0 .0 0 .0 0 .0 0 .0 0 .0 0 .0 0 .0 0 .0CO 0.0 0 .0 0 .0 0 .0 0 .0 0 .0 0 .0 0 .0eEM 0.0 196.0 -260.1 64.0 32.0 183.8 -183.8 -91 .9net 0 .0 0 .0 -32.0 0 .0 91 .9dist 0 .0 0 .0 0 .0 0 .0 0 .0 0 .0 0 .0 0 .0CO 0.0 0 .0 0 .0 0 .0 0 .0 0 .0 0 .0 0 .0eEM 0.0 196.0 -260.1 64.0 32.0 183.8 -183.8 -91 .9net 0 .0 0 .0 -32.0 0 .0 91 .9dist 0 .0 0 .0 0 .0 0 .0 0 .0 0 .0 0 .0 0 .0CO 0.0 0 .0 0 .0 0 .0 0 .0 0 .0 0 .0 0 .0eEM 0.0 196.0 -260.1 64.0 32.0 183.8 -183.8 -91 .9net 0 .0 0 .0 -32.0 0 .0 91 .9dist 0 .0 0 .0 0 .0 0 .0 0 .0 0 .0 0 .0 0 .0CO 0.0 0 .0 0 .0 0 .0 0 .0 0 .0 0 .0 0 .0
eEM 0.0 196.0 -260.1 64.0 32.0 183.8 -183.8 -91 .9

F21y 59.6 F12y 20 .4 F42x 5 F53x -22
F42y 143.4 F53y 83.8

F23y 83.8 F32y 76.2

w=8 kN/m

problem

1 2 3

all E I

20m10m

1

12 21 23 32

Example #3

12.5 m

20m

4

53

35

5

24

42

all E I,  no sway

 


