

Engineering 5003 - Ship Structures I

MID-TERM EXAMINATION

Date: Wed., Feb. 20, 2014 Professor: Dr. C. Daley

Time: 1:00 - 1:50 pm

Answer all questions. Total 20 marks. Each question is worth marks indicated [x]. Short, clear answers are best. If you are having a problem (ie a road block) assume something, write down the assumption, and continue. Good luck.

SOLUTIONS

NAME:	 	
NUMBER: _		

1. Make a block diagram sketch of the steps involved in the structural design of a ship and write a paragraph explaining the key ideas. [4]

2. For the section shown below (left), sketch the corresponding bonjean curve (on the right). [4]

[1]

- **3.** A block of wood is floating water as shown below.
- a) what is the draft T of the block?

To solve:

$$T \times 2 \times 0.29800 = 200$$
 \Rightarrow $T = 200/(2 \times 0.2 \times 9800) = 0.051m <= ANS$

b) A 100 N small steel block is placed on the wood as shown below. What are the new drafts (Ta and Tb)? [2]

Tb is unchanged (center of changed buoyancy is as 1/3 from end so it's a triangle so there is no change at b)

Ta orig. draft + 2x mean change in draft. Mean draft changes by 1/2 original draft (as 100 is half of 200). So:

$$Ta = 2 \times 0.051 = 0.102 \iff ANS$$

c) for the block with the weight, what is the midship bending moment? (if you don't know how to solve part b, just assume reasonable values and continue)
 [2] unbalanced load fwd of midships is 25 N. FBD of fwd half of vessel is shown.
 Moment required at midships must balance 25N x 2/6m = 8.33 N-m

[2]

d) pls sketch the shape of the shear force and bending moment diagrams (no numbers)

- **4.** For the fixed-pinned shown below;
- a) pls sketch the shape of the shear, moment, slope and deflection diagrams (no numbers) [3]
- b) write the equations for the <u>shear</u> and <u>bending</u> as you would if solving the system by direct integration. You do not have to solve the equations, so you can leave any unknowns unsolved.

Q = Qo - p x

$$M(x) = Mo + Qo x - P/2 x^2$$
.

