

Engineering 5003 - Ship Structures I

MID-TERM EXAMINATION WITH SOLUTIONS

Date: Friday Feb. 16, 2017 Professor: Dr. C. Daley Time: 10:00 - 10:50 am

Answer all questions. Total 20 marks. Each question is worth marks indicated [x]. Short, clear answers are best. If you are having a problem (ie a road block) assume something, write down the assumption, and continue. Use the page backs for extra space if needed. Good luck.

NAME:		
NUMBER:		

[4]

1. Identify the following items in the figure;

- Flab bar stiffener
- Floor
- Girder
- Inner Bottom Plate
- Web Frame

- Bilge Plate
- Double Bottom
- Collar
- Ring Stiffener
- Longitudinal Frame

2. A simple barge is made of steel, is 10m long, 2m wide and 1m high. The sides and bottom steel is all 20mm thick. Steel has a density of 7850 kg per m3 and water has a density of 1000.

a) what is the draft of the barge?

- [1]
- b) what is the midship bending moment (describe you steps and assumptions)
- [2]

c) compute the moment of inertia at midships

[2]

- (a) Total steel weight = $(10x4 + 2x2) \times 0.02 \times 7850 = 6908 \text{ kg}$ Total buoyancy = $T \times 20 \times 1000 = 6908$ => T = 6908/20000 = 0.3454 m <<<<<< ANS
- (b) The steel weight of the end plate is special. All other steel is supported by a buoyancy force directly under its cg. The end plate weighs = $(1x2) \times 0.02 \times 7850 = 314 \text{ kg} = 3080 \text{ N}$ The moment is M = $3080 \times 10/4 = 7700 \text{ N-m}$

(c) Here are exact and approximate calcs (3% error).

EXACT	width height		area dist to cent			local m.o.i.	
	w	h	а	у	ау	a y ²	i
sides	0.04	1	0.04	0.5	0.02	0.01	0.00333333
bottom 1.9	1.96	0.02	0.0392	0.01	0.000392	3.92E-06	1.3067E-06
		Σ	0.0792		0.020392	0.010004	0.00333464
		centroid	С	0.257475			
			I_base	0.013339			
			l_na	0.008088	<<<<<<	<<< ANS	
	width	height	area	dist to cen	it		local m.o.i.
	w	h	а	у	ау	a y ²	i
sides	0.04	1	0.04	0.5	0.02	0.01	0.00333333
bottom	2	0.02	0.04				
		Σ	0.08		0.02	0.01	0.00333333
		centroid	С	0.25			
			I_base	0.013333			
			l_na	0.008333	<<<<<<	<<< ANS	

3. For the station sketched below (which only shows a half section), draw the bonjean curve (accurately and for whole section) [3]

moment diagram [4]

4. For the cantilever beam sketched below, solve using direct integration to get expressions for shear and moment as functions of x. Plot these 2 results.

M(x)

Qo = 0
Mo = 4 kN m (= 4 x 1)
Q(x) = Qo +
$$\int_{0}^{x} -4 dx$$
 (x<1) \rightarrow Q(x) = -4x (x<1) Q(1) = -4 kN
Q(x) = Q(1) + $\int_{1}^{x} 4 dx$ (x<1)
= -4 + (4x) \int_{1}^{x} \rightarrow Q(x) = -8 + 4x (x>1)
M(x) = Mo + $\int_{0}^{x} -4x dx$ (x<1) \rightarrow M(x) = 4 -2x² (x<1) M(1) = 2 kNm

$$M(x) = M(1) + \int_{1}^{x} -8+4x \, dx (x>1)$$

$$= 2 + (-8x + 2x^{2})_{1}^{x} \longrightarrow M(x) = 8 -8x + 2x^{2} (x>1) \qquad M(2) = 0$$

[4]

For the four beams shown below;

Sketch the shape of the shear force, bending moment, slope and deflection diagrams. No numbers are required, but you should estimate the shape as correctly as you can.

W

Q(x)

M(x)

 $\phi(x)$

y(x)

end moment cantilever

