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ABSTRACT 

A new IACS (International Association of Classification) standard for Polar Ship design, in 

the form of a Unified Requirement is being developed by an international committee with 

representatives from many classification societies and with the active participation of many 

polar nations. The framing structural requirements have been developed by a combination of 

analysis of existing rules and ships, finite element analysis and analytical solutions of plastic 

collapse mechanisms. This paper describes the derivation of the 3-hinge and asymmetrical 

shear plastic collapse mechanisms using work-energy principles. Energy methods are robust 

and well suited for developing design standards. The results are shown to compare well with 

non-linear finite element analyses of frame strength. 

 

Key words: plastic design, ship structures, framing, ice class, Polar ships, IACS, shear and 

bending interaction. 

 

NOTATION 

a length of shear panel 

A1 shear factor in rule modulus equation for 3-hinge mechanism 

A2 shear factor in rule modulus equation for shear mechanism 

Af area of the flange 

Am x-intercept of shear interaction equation 

An normalized web area 

Ao minimum web area 

Aw area of the web 

b height of the ice load patch 

c distance to edge of patch load 

EWD external work done 

fz function of kz 

hw height if the web 

IWD internal work done 
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j number of fixed supports 

kw area ratio 

kz ratio of zp to Zp 

L length of frame 

Mp plastic moment for frame 

mp sum of plastic moments in plate and flange  

Mpr reduced plastic moment 

N shear force 

P pressure 

P1h pressure causing collapse for case of 0 fixed supports 

P2h pressure causing collapse for case of 1 fixed supports 

P3h pressure causing collapse for case of 2 fixed supports 

Ps pressure causing collapse for end load case 

S frame spacing 

tf thickness of the flange 

tp thickness of the shell plating 

w length of the ice load patch 

wf width of the flange 

Zf contribution of the flange to the plastic section modulus 

Zm y-intercept of shear interaction equation  

Zn normalized plastic section modulus 

Zo minimum plastic section modulus 

Zp plastic section modulus 

zp sum of plastic section moduli of plate and flange 

zpflange plastic section modulus of the flange 

Zpmax maximum useful value of plastic section modulus  

Zpns a non-dimensional modulus 

zpplate plastic section modulus of the plate 

Zpr reduced plastic section modulus 

Zw contribution of the web to the plastic section modulus 

 deflection of the frame 

y yield stress 

 shear stress 

y yield stress in shear 

 

 

 

1. INTRODUCTION 

Design is the process of specifying capability to satisfy anticipated demands. When designing 

ships for operation in ice, the inherent possibility of overloads must be considered. To 

mitigate against the consequences of overload conditions, there has been a move towards 

plastic design. At the design load level the structure is intended to exhibit some plastic 

behavior, yet maintaining substantial reserve against actual collapse or rupture. The 

derivations of strength shown below make use of plastic limit analysis. The load is determined 

by postulating the formation of a plastic mechanism, and equating internal and external work. 
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The method assumes rigid-plastic material behavior and ignores large strain and large 

deflection effects (such as strain hardening and secondary membrane stresses). This approach 

was developed as part of the development of the new Unified Requirement (UR) for Polar 

Ships, developed by the International Association of Classification Societies (IACS) [IACS, 

2001]. The design ice loads for the UR are described in [Daley, 2000] (see Figure 1). A 

general discussion of the structural requirements in the UR is described in [Daley and 

Kendrick, 2000] and in [Daley, Kendrick and Appolonov, 2001] 

 

The UR requires that frames be checked against several failure mechanisms. This paper 

describes and derives the nominal plastic strength for the case of a central patch load (see 

Figure 2), and an end (or asymmetrical) load patch. A related paper [Daley, 200x] discusses 

the application of these equations in a design/optimization exercise.  

 

 

 
Figure 1. Design Ice Load Patch 

 

 

2. CENTRAL LOAD CASE 

The main case involves frames that are built-in on both ends (capable of transmitting a plastic 

moment to the surrounding structure, see Figure 2). 
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Figure 2. Centrally loaded fixed-fixed frame, with assumed plastic mechanism. 

 

 

2.1 Energy Balance 

 

We start by balancing internal and external work (see Figure 2). The external work depends 

on the external load and the deflection of the frame under the load, as shown on the left hand 

side of equation (1). The internal work includes the component from the central hinge, 

unaffected by shear, and the two edge hinges, which have reduced capacity due to shear. The 

internal work is shown on the right hand side of equation (1). Figure 3 shows other end 

conditions, with j being the number of fixed ends. 
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where: 

plastic moment: yZpMp    (2) 

reduced plastic moment: yZprMpr    (3) 

   

On substitution of (2) and (3) into (1) we have: 
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The next step is to determine the values of Zp and Zpr.  

 

2.2 Plastic Section Modulus 

 

The plastic section modulus is used to calculate the moment capacity of a section when a 

plastic hinge has formed. Assuming perfectly plastic stresses, the balance of forces requires 

that the plastic neutral axis form at the half-area axis.  The plastic section modulus is then the 

first moment of area about the plastic neutral axis. While this concept should work or all cross 

sections, it works best for ‘I’ sections, and less well for sections typical of frames attached to 

plating in ships. Often in ships, the frame area (web + flange) is less than the area of the shell 

plating. This results in the half-area axis, which is the plastic neutral axis, being inside the 

shell plating. Figure 3 illustrates the issue. In Figure 3(a), the state of strain and stress prior to 

full plasticity is shown. Because the distance to the flange is so much greater than the distance 

to the outer plate, the strain in the flange must be much larger than the plate. The neutral axis 

must be in the inner half of the plate and will normally be quite close to the inner side of the 

plate. For the inner fiber of the plate to reach full plasticity, the flange must have very large 

strains. This is both unrealistic and complicates the calculation of the plastic section modulus. 
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A more physically realistic and far simpler model of plastic section capacity for ship framing 

is to assume that the neutral axis forms at the intersection of the web and the shell (see Figure 

3(b)). This assumption also implies that the stress in the plate is, on average, less than or equal 

to the yield stress. The force in the plate just balances the forces in the web and flange. 

 

 
Figure 3. Simplified plastic modulus concept. 

 

 

The section modulus (assuming PNA is at the web/plate connection) is: 

 

 ZwZfZp    (5) 

where: 
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This results in: 
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2.3 Reduced Plastic Section Modulus 

 

Assume that the shear is carried by the web. As the shear load increases, the ability of the web 

to contribute to the bending moment is reduced. This loss of moment capacity is formulated 
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as a loss of section modulus.  The shear is assumed to affect only the web's ability to 

contribute to bending. The reduced capacity is therefore given by: 
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where 

 

Shear stress in web: Aw
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(10) 

 

Yield shear stress: 
3

y
Y


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(11) 

 

The minimum allowable web area Ao corresponds to shear yield at both supports under the 

design load. 
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Solving for Ao: 
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which allows equation (9) to be stated as: 
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where kw is the ration of the web modulus (equation (7)) to the full plastic modulus: 

 

Zp

Zw
kw        (15) 

an approximate (within a few %) value for kw is : 
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2.4 Interaction Equations for Central Load 

   

Moment and shear capacity interact, as shown by Equation 14. Figure 4 illustrates this 

interaction. As the shear force increases, the shear stress lowers the contribution of the web. 

When the web is fully plastic in shear, the moment capacity is minimized. For sections with 

flanges, the minimum moment (minimum modulus) becomes Zf. For flat bar sections the 

moment is zero. This approach gives recognition, in a simple practicable way, to the 

contribution of the flanges after the web has fully yielded. Normally, however, frames are 

designed to work in an intermediate range, with significant moment and shear capacity. 

 

 
 

Figure 4. Interaction plot for moment and shear. 

 

We denote the minimum modulus Zo, as that required if web is fully effective in bending 

(found by solving equation (4) with Zp=Zpr ): 
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Setting the normalized modulus to: 

 
Zo

Zp
Zn    (18) 

and the normalized shear area to; 

 
Ao

Aw
An   (19) 

and using equations (4), (8), (14), (18), and (19) the interaction equation between modulus 

and shear area requirements can be written in dimensionless form as: 

 



8 C. Daley 

 









































1
1

12

2

2

An
kw

Zn   (20) 

 

or in dimensional form: 
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Using Equation (21) we plot the interaction equation for various Af/Aw ratios (see Figure 5). 

The acceptable region is above the curves.  The inclusion of the interaction effects shown in 

Figure 6. is a significant development in the IACS Polar Rules. The requirement better 

represents the behavior of frames, but requires more effort to determine actual scantlings.   

 

  

 

 

Figure 5. Interaction plot for modulus and web area for 3-hinge collapse. 

 

2.5 Capacity Equation for 3-Hinge Collapse 

 

While equation (21) is useful for determining the required modulus, it is less useful for 

checking the compliance of a specified frame. To check a frame, comparison of the design 

load with the capacity of the frame is simpler. The capacity for 3 hinge collapse (centered 

load), is found by solving for the pressure. Combining equations (4), (13), (14), (21) gives : 
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solving for P, we have the pressure to cause 3 hinge collapse: 
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where the term Zpns  is: 
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for the term under the root sign in equation (23) to stay positive, Zp must be less than Zpmax, 

where; 
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note: in cases in which Zp > Zpmax, the frame will first fail by shear at both supports (central 

load). In this case the capacity is nominally limited by: 
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  (26) 

 

3. END LOAD CASE 

The main case involves frames that are built-in on both ends (capable of transmitting a plastic 

moment to the surrounding structure, see Figure 6). In the case of the far end pinned the 
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solution results in a value of 'a' greater than L/2, and is thus illogical. Practically, this means 

that we only check this mechanism for fixed-fixed boundary conditions, and that pinned 

connections are not to be allowed in the ice-strengthened areas.  

 

 

 

Figure 6. End loaded fixed-fixed frame, with assumed plastic mechanism. 

 

 

3.1 Energy Balance 

The external work done is found by integrating the external load over the deformation (for  

=1). The general equation (see Figure 7) for the external work (EWD) is; 
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We can simplify this by finding the location (value of c) which maximizes the work done. 

This is done by using; 
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When solving the above for c we get; 
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Substituting (29) into (27) , we get; 

 

 










L

b
SbPEWD 1

 (30) 

 

 

 

Figure 7. Shape of asymmetrical collapse. 

 

The internal work (IWD) per unit deflection includes the plastic work done by the shear panel, 

the 4 small plastic hinges in the flanges and the large plastic hinge at the far end. The equation 

is; 
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where: 

 

shear force in web: 
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plastic moment in full frame: 
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sum of local plastic moments in 

plate and flange: 
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sum of local plastic section mod. 
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local plastic section modulus of 
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section modulus of frame  

(assumes NA at plate/web join) 
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Equating EWD with IWD gives an energy balance equation of : 
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where: 

 

ratio of local to total moduli Zp
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(40) 

 

 

The value of a will be that which minimizes the internal work. This is found by taking the 

derivative of IWD with respect to 'a' and setting it to zero. This gives;  
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Solving (41) for a/L, we get; 
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This is the exact solution. An approximate solution is; 
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When we plot the two equations (Figure 8), we see that equation (43) is a very good 

approximation to (42). Note that a/L is only a function of kz, so this comparison will hold for 

all cases.  

 

 

Figure 8. Comparison of exact and approximate values of a/L 

 

Now, we can write the energy equation as;  
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where fz depends on a/L and kz.  fz can be expressed as exactly (substituting (42) into (39) and 

solving exactly), near-exact (substituting (43) into (39) and solving exactly) or approximately 

(fitting the exact solution to a simpler equation)). The exact solution for fz is: 
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The near-exact solution is (uses approx a/L); 
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The approximate solution for fz is;  
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Equations (45), (46), (47) are plotted in Figure 9. The plot shows that all three equations are 

equivalent (<1% error). Again, as fz is only a function of kz, this comparison will be the same 

for all cases. 

 

Figure 9. Comparison of formulae for fz. 

 

 

The above derivations have enabled the development of a relatively simple energy equation, 

which accounts for the optimal load and hinge locations. Figure 9 shows that the 

simplifications have not diminished the accuracy of the solution. Thus, the energy balance 

equation takes a simpler form; 
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3.2 Interaction Equations for End Load Case 

 

Equation (48) can be re-stated in a non-dimensional form, similar in form to the interaction 

equations for the 3-hinge case: 
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As in the case of 3 hinge, we define the minimum web area Ao: and Zo as before (equations 

(13), (17)). Using Ao and Zo, we can re-write the capacity equation as: 
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which is simplified to: 
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where Zn and An are normalized values from Equations (19) and(20). By re-arranging (51), 

we get the interaction equation; 
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(52) 

This interaction equation is a straight line. The y-intercept is defined as Zm, and the x-

intercept is Am. The equation can be written as; 
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Note that the interaction diagram depends on Am (which depends only on the patch/span ratio 

b/L) and Zm (which depends only on the modulus ratio kz=zp/Zp). This allows us to add a kz 

axis to the modulus axis, and a b/L axis to the  shear area axis.   

 

The interaction equation (53), shows some interesting properties. The equation is linear, 

meaning that an increase in web area will result in a constant decrease in the section modulus 

requirement. Two extreme cases (neither actually possible) involve a shear area of Am, with 

zero modulus, or a section modulus of Zm with zero web area. In the first case the entire load 

would be carried by the web (the plastic shear panel, with no load transmitted to the far end). 

At the other extreme, with no shear capacity, all the load would be carried by the far end, as a 
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plastic cantilever beam. For all realistic cases the load is carried in three ways; through the 

shear panel in the web to the near end, through the plate and flange to the near end, and 

through the full frame to the far end. A trade-off among the web, flanges and full modulus 

allow for various possible designs.   

 

The interaction plot for shear is illustrated in Figure 10. Two cases are illustrated to show a 

range of possible interaction equations for the shear mechanism. Also shown are interaction 

equations for the 3-hinge collapse mechanism (for the centered load). The three hinge case 

will require Aw/Ao and Zp/Zp to both be greater than one. The two example 3-hinge 

interaction curves cover a range of possibilities (the upper is for a flat bar and other is a 

typical flanged frame). It is clear that there will be cases in which the shear mechanism will 

never govern. In the case where the load length covers most or all of the frame (b/L ~1), the 

shear curve will always lie below the 3-hinge curves. In the case of a very concentrated load, 

especially on a frame with small flanges, shear collapse will more likely govern.   

 

 

Figure 10. Interaction plot for asymmetrical shear collapse. The equation depends on the load 

patch length and on the ratio zp/Zp. The 3-hinge interaction is also shown. 

 

3.3 Capacity Equation for Shear Collapse 

 

The capacity equation is just a re-arrangement of (48); 
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(56) 

 

 

4. COMPARISON WITH PLASTIC FE ANALYSIS 

Two frames were analyzed using non-linear finite element analysis. In both cases, a patch 

load was applied in the center. The frames are shown in Figure 11: 

 

The FE load-deflection curves for the central load are plotted in Figure 12. Also shown are the 

values calculated from equation (23) (note: Equation (23) only gives a load, not a deflection.) 

The calculated values agree very well with the onset of large permanent deformations. 

 

 

 

Figure 11. Frames used in validation exercise. 

 

 

Figure 12. Comparison of equations with finite-element results for central load case. 
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The FE load-deflection curves for the end load case and the values calculated from equation 

(56) are shown below (see Figure 7). The calculated values agree very well with the onset of 

large permanent deformations. 

 

 

 

 

 

Figure 13. Comparison of Equation (56) with finite-element results. 

 

The finite element analyses show that frames no not actually collapse when plastic 

mechanisms form. This is due to the axial forces and large deformations, which are not 

considered in the energy methods. The equations produced by the energy methods are useful 

as design equations, representative of the onset of large deflections and large strains.  

 

 

5. RULE EQUATIONS 

The above derivations lead to the following rule equations. For checking the symmetrical load 

case, equation (13) gives the minimum shear area Ao. The required section modulus Zp, 

equivalent to equation (21), which with slight re-arrangement can be written as: 

 

 

Zp
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


 A1

 (57) 

where: 
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with kw is defined by Equation (16), and j is the number of fixed supports (normally 2).  

 

The check that adequate capacity exists to prevent shear collapse with an asymmetrical load 

results from re-arranging (52).  The additional formula for Zp, to augment the central load 

case is; 
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where: 
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Equations (57) and (59) are identical except for the A1 and A2.  

 

6. CONCLUSION 

The derivations of the rule equations for checking framing modulus and shear strength have 

been presented. The final equations for both central 3-hinge collapse and end load shear 

collapse both show an interaction between bending and shear strength. This allows designers 

to trade off shear area against section modulus. The interactions can be seen in the interaction 

plots presented. Optimal and effective design requires an understanding of these effects, in 

combinations with the structural stability (tripping and buckling) rules and the constraints of 

available sections geometry.  

 

The new Unified Requirement makes a significant step forward in expressing the load and 

structural response in realistic terms. The loads reflect actual measured values, and the 

structural equations reflect both plastic behavior and interaction effects. This, the author 

believes, lends a greater level of safety and certainty to these rules.  
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