E-9093
Ice Class Ship Structures

by
Claude Daley

Part 2 — Overview of Polar Rules

Ice Class Ships 1




Development of Polar Rules

Work began as a “Harmonization: effort

1993 — 2006 work at IMO/IACS to rationalize and simplify ice
classes

IMO Guidelines provide framework for design and operation

IACS Unified Requirements provide specific structural and
machinery requirements

Ice Class Ships pt 2



Development of Polar Rules

The Polar classes have been developed by IACS to establish a common
system of ice classes.

PC classes bring together the experiences of many prior rule systems,
including those of several Classification societies and Governments,
including;

#Canadian ASPPR/CAC (9 Classes)
#Russian MRS/NSR (9 Classes, 4 Icebreaker)
#Finnish/Swedish (Baltic) (5 Classes)

#ABS (USCG) (5 Polar, 5 Baltic Classes)
#®DNV (3 Icebreaker, 3 Polar, 5 Baltic Classes)
#LR (5 Polar, 5 Baltic Classes)

#0ther classification societies
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Polar Class descriptions

glc::; Ice Description (based on WMO Sea Ice Nomenclature)
PC1 Year-round operation in all Polar waters

PC 2 Year-round operation in moderate multi-year ice conditions

PC3 Year-round operation in second-year ice which may include multi-year ice inclusions.

PC4 Year-round operation in thick first-year ice which may include old ice inclusions

PC5 Year-round operation in medium first-year ice which may include old ice inclusions

PC 6 Summer/autumn operation in medium first-year ice which may include old ice
inclusions

PC7 Summer/autumn operation in thin first-year ice which may include old ice inclusions
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Polar Classes

In many circumstances class selection will depend on an analysis of ice
statistics, owners experience, ice expertise and financial/economic
considerations. The Polar Rules give on general guidance. All Polar classes
can find ice that will damage the structure. Class selection is a balance among
ice conditions, operational requirements and cost.

IACS
PC1
PC2 Year-Round
PC3 Navigation
PC4 | 1n Arctic Waters
PCH

Winter | 1A Super | PCO6 | Summer Navigation
Navigation IA PC7 | in Arctic Waters

in Sub-
Arctic IB
Waters IC

FSICR
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Class Selection

Selection of class can be easy or difficult, depending on
the situation.

When the ship is intended for a specific route and
operation in one of the controlled arctic shipping
regions, the required class is set by the shipping
control regime.

For example:

B Russia — ice passport, NSR regulations
B Baltic — FMA escort regulations

B Canada —ice numeral system
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PC Concept of Loads

Polar Rules are based on the concept that ice loads can be
rationally linked to a design scenario.

The design scenario is a glancing collision with an ice edge
(edge of a channel, edge of a floe). This scenario is valid
for both independent and escorted operations.

crushing contact

ey
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PC Ice Load Concept

Scenario: ship striking an
ice edge.
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lce Load Derivation

Normal Kinetic Energy = Ice Indentation Energy
v

Find indentation = Find force, area, pressure.

clrushing cuﬁfact
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lce Load Derivation

ship oblique view

ice

true side view contact surface top 3D sketch
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ice edge indentation. e VY

contact surface
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lce Load Derivation

Normal Kinetic Energy = Ice Indentation Energy

7
Find indentation = Find force, area, pressure.
KEnormal — IEice
1 2 oM
~M.V, = | F.(6)-ds
1 I\/Iship 2 Lrex O™ <242ex
o Vip 1 f = Po-ka*™ [ 577 ds

Solve ford - then solve for Force
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Ice Load Derivation
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lce Load Derivation

Also from & and Force:

pressure: P = Fn'22 -CFé . AR0'3

. Other Rule Equations: _
T ‘ lineload: Q=F°"".CF, - AR*®

width: w=F/Q

height: b=Q/p
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Class Factors

The higher class factors represent increasing ice
thickness, ice strength and ship speed.

Polar Crushing
Class Failure Class
Factor (CFc)
P 17.69
PC2 9.89
PC3 6.06
PC4 4.50
PC5 3.10
PC6 2.40
PCT 1.80
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Rule Load:

The whole bow is to be designed with one load patch. To arrive at the
design load, 4 specific values are calculated

The largest of F, Q and p are used in the assembles bow design load.

F, Q py  F3 Q3 p3

Fo Q P, Fy Qq py

Oblique View \4 locations to find load Design Load

w_—
%\\ F=max(F1,F2,F3,F4)
| / oA Q=max(Qq,Q,,Q3,Q,)
\ / \ p = max(p4, Py, P3., Py)
Bow Hull Area w=F/Q b= Q/p
Side View W

I

Bow Load Calculation Locations
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Hull Areas

The areas other than the bow are designed for a portion of the

bow load. The hull areas are defined based on the shape and
waterlines of the vessel.

Midbody ice (Mi)
Stern ice (Si)

Bow\ Intermediate ice (Bli)
7
- N <

LAY T Bow Hull Area (B)
Midbody lower (Ml) Bow Intermediate lower (Bll)
Stern lower (Sl)

Ster bt (Sb) Midbody bottom (Mb) | Bow Intermediate bottom (BIb)

S

Top View
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Hull Area Factors

The hull area factors are applied to a standard (for all vessel
shapes) bow load patch.

Polar Class
Hull Area Area 5 ET T pCz | PC3 | PCa | PC5 | PCe | PCT
Bow (B) All B 1.00 1.00 | 1.00 | 1.00 | 1.00 1.00 | 1.00
Bow Icebelt | BIi | 090 | 085 | 085 | 0.80 | 0.80 [ 1.00* | 1.00*
Intermediate Lower BIl 0.70 0.65 0.65 0.60 0.53 0.55 0.50
(BI) Bottom | BIb | 0.55 0.50 | 0.45 040 | 0.35 030 | 0.25

Tcebelt | Mi | 0.70 | 065 | 055 | 055 | 050 | 045 | 045
Midbody (M) Lower | Ml | 050 | 045 | 040 | 035 | 030 | 025 | 025

Bottom | Mb 0.30 0.30 0.25 ok ok ok ok

Icebelt Si 0.75 0.70 0.65 0.60 0.50 0.40 0.35
Stern (S) Lower S1 0.45 0.40 0.35 0.30 0.23 0.25 023

Bottom Sb 0.35 0.30 0.30 0.25 0.15 il ow
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Polar Class Structural Rules

* Ice loads based on ice mechanics

— Rectangular load patch, with horizontal orientation

— Uniform pressure patch, with P/A effects in pressure term
e Structural design based on realistic plastic response

— analytical (energy) solutions, verified by FE analysis (and lab tests)
— plate folding for shell plate

— bending/shear considerations for frames

— Simple buckling-based slenderness limits
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Plate requirements

— plate folding based on perfectly plastic hinge formation

— equate internal plastic work with external work

— gives nominal plastic capacity (>2 x yield)

— small plastic strains (shown by FE analysis)

— substantial membrane & material reserve (little chance of

rupture) . ]
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Plate requirements

1 S
t=0.5s FF\)( : S i 4
1+ 0.56 t
IN—]
similar to plastic collapse formula for " ice pressure p
uniformly loaded plate L b 1l
s/b term reflects load height effect v
PR
Y
—_—
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Plating Rule Text:

12.4 - Shell Plate Requirements

12.4.1 The required minimum shell plate thickness t, is given by:

t = tnet + ts[mm] [Equation 16]

where t,.= plate thickness required to resist ice loadsaccording to 12.4.2 [mm]
ts= corrosion and abrasion allowance according to 12.11 [mm]

12.4.2 The thickness of shell plating required to resist the design ice load, t,, depends on the orientation
of the framing.

In the case of transversely -framed plating (2 > 70 deg), including all bottom plating, i.e. plating in hull
areas By, M, and Sy, the net thickness is given by:

Gm: 500 * s * ((AF * PPF, * Pp,) / 6,)"" / (1 + /(2 * b)) [mm] ) [Equation 17a]

where s= transverse frame spacing in transversely-framed ships [m]
AF = Hull Area Factor from Table 3
PPF, = Peak Pressure Factor from Table 2
P,y = average patch pressure according to Equation 15 [MPa]
6, = minimum upper yield stress of the material [N/mm?]
b = height of design load patch [m], where b < (a — s/4) in the case of [Equation 17a]
[ = distance between frame supports, i.e. equal to the frame span as given in 12.5.5,
but not reduced for any fitted end brackets [m]. When a load-distributing stringer is
fitted, the length /need not be taken larger than the distance from the stringer to the

most distant frame support.
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Frame requirements

* 3 limit states checked

* Two involve shear/bending resulting in interaction effects
* Third is pure shear

* Frame design allows tradeoffs
* Qver-capacity in web area allows saving in modulus and v.v.
* Design point is post-yield, but still quasi-elastic
* Permanent deflections are ~0, with significant strength reserve.

edge patch load

o S central patch load
mp :
B e (e

lastic hinge lastic hinees
plastic panel in web P g Mp plastic hing

plastic hinges in flanges
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Frame requirements

* Design point is onset of permanent deflections.

traditional 'plastic reserve' range

traditional 'working stress' range

actual 'plastic reserve' range T

actual 'working stress' range
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'Simple' Plastic Theory
e ————-
\ H ) &
/’ 3-hinge 'collapse
| 2
‘ 7 > ield
/
/
A4
deflection
Load Actual Structural Behavior
\ 3-hinge-like 'mechanism’
S \yield
deflection




Frame requirements

15t limit state — 3 hinge formation

o central patch load

Rule requirement m
for plastic .b-S.
Zp_PbSL(l b) 2

modulus:
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Frame requirements

2" Limit state : shear panel formation

edge patch load

plastic hinge

plastic panel in web
plastic hinges in flanges

Rule requirement
for plastic
modulus: Zp
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Frame requirements

3rd Limit state : end shear

central patch load

plastic web collapse

Rule requirement

for min web area:  AW=A0
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Frame requirements o\

— 3 limits in the design space for .04

modulus and area. 05 1 §Elﬁ'fzif?;-’f?’?!iMF-ESE

3 hinge: y

>'/_ mech%mism E:

N
end shear >
mechanism ™

end shear: I [ N

- . AN
BN
Zp 4 Aw 1 zpiZp=.15, bIL=5 S

20 11+575kz")| Ao 2-(1— b ) WL 1.8 6 4 .2
s 2

3 hinge :
mcchanism

2.5
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Experimental validation
— Experimental results show stable post-yield behavior

Load-deflection curves for points under the load patch
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=
STePS? Structures Experiments: 551%PSZ

Ship Grillage can withstand 10x yield, 6x PC load,
with minor effect (dent but no fracture)
true limit not reached

Load

— T T T e
8in
§2o.ooo§ 2.76 MN

600 | Pt
L —]

C Design Load = 10600£lb

Yield Load = 61OOT Ib /

1 2 3 4 5 6 7 8 9
Deflection (in.)
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UR structural requirements - summary

— plastic capacity with substantial reserve at design load levels
— analytical energy methods give useful design equations

— validation by non-linear FE analysis, and experimentation

— multiple limit states for frames (improved mechanics)

— ‘design’ effort required (by users) to satisfy multiple and
Interacting effects

« gives flexibility for designer
* more realistic structural behavior
e aim: safer, economical structures.
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end of introduction to PC rules
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