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Abstract—This paper introduces an unmanned aerial vehi-
cle (UAV)-enabled network slicing problem to provide content
delivery, sensing data gathering, and mobile edge computing
(MEC) services. Three tenants provide services to their clients by
sharing a common infrastructure of a set of UAVs. The content
delivery tenant needs to guarantee that each of its clients (users)
receives the required content, the sensing tenant aims to gather
an adequate amount of uncorrelated data, and the MEC tenant
provides computing service to its clients. An energy consumption
minimization framework is considered to meet the tenants’
requirements by optimizing the number of deployed UAVs, the
deployment location of each UAV, the transmit power of each
deployed UAV, the user-UAV association, and the transmission
power as well as the computing resources of each UAV. Taking
into account the spatial correlation among the sensing users, a
subset of these users is activated to gather the required sensing
information. A solution approach technique inherited from graph
theory is presented, in which the Lagrange approach derives the
transmission power and computing resource allocation expres-
sions. Simulation results illustrate that the proposed framework
significantly reduces the total energy consumption.

Index Terms—Content delivery, mobile edge computing, net-
work slicing, spatially-correlated data gathering, unmanned
aerial vehicle (UAV).

I. INTRODUCTION

The recent development of communication networks, such
as the fifth generation (5G) and beyond 5G networks, is associ-
ated with a major development in the networks’ infrastructure
and resources [2]. Alongside the growth of communication
networks, smartphone devices and vehicular systems exhibit
more computing and sensing capabilities, which increases
the amount and diversity of the gathered data. The sensing
capability of devices has given birth to an emerging paradigm,
namely mobile crowd sensing (MCS), which enables devices
to build participatory sensor networks [3]. The MCS devices
can collect sufficient information regarding the detection of
physical phenomena or surrounding conditions such as traffic
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or temperature. By designing appropriate rewards for the
contributed devices, the participation of the devices can be
decided. The reward of each contributing device can be
proportional to the importance or novelty of the data obtained
by the device. Some work in the literature has investigated the
aggregation of data from a group of devices considering the
spatial correlation [4], [5] and/or the novelty of information
[6].

Content delivery represents an important aspect of the 5G
networks as daily generated content (e.g., YouTube videos,
Dropbox shared files, Instagram pictures) witness exponential
growth in their quality and quantity requirements. Multiple
efforts have been devoted to developing different techniques
for content delivery, such as network coding [7] and unmanned
aerial vehicle (UAV)-enabled data delivery scenarios [8], [9].
The evolution of 5G networks is associated with increased
computing capabilities throughout these networks, especially
at the edges, which gives birth to the mobile-edge com-
puting (MEC) paradigm to provide task offloading services
in terrestrial and non-terrestrial networks [10]. Integrating
aerial devices (such as UAVs and high-altitude platforms)
into 5G networks enables flexible and cost-efficient infras-
tructure deployment as well as providing services, including
MEC services, in areas lacking ground infrastructure [11]–
[13]. UAV-enabled networks leverage the line-of-sight (LoS)
dominant UAV-ground communication channels, which can
also include non-LoS (NLoS) links in some locations with
different characteristics, such as urban areas [14].

Network slicing enables the coexistence of multiple virtual
networks that share the same infrastructure while providing
different services with heterogeneous requirements [15]. Net-
work slicing enables mobile network operators to lease their
communications resources, such as base stations, cell sites,
and data centers, to service providers or tenants which offer
services to their customers or users [16]. The tenants lease
resource slices to meet their customers demands while the
network operators provide the resources [17]. This concept is
referred to as network-as-a-service (NaaS), which makes op-
timal allocation of the available communication infrastructure
and resources a critical challenge that must be addressed to
meet the tenants’ obligation and benefit the operators.

Various works in the literature have considered UAV-
enabled MEC and network slicing. In [18], a collaborative
multi-UAV decision-making system was considered to op-
timize the task offloading and resource allocation in MEC
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TABLE I
MAIN NOTATIONS USED IN THE PAPER.

Notation Description Notation Description
N Total number of users in the users set N U Number of available UAVs in the UAVs set U

Nc/Ns/Nm Set of content delivery/sensing/MEC users, N = {Nc,Ns,Nm} K Number of deployed UAVs K ≤ U
Nc/Ns/Nm Number of content delivery/sensing/MEC users, N = Nc +Ns +Nm C Number of contents in the content catalog C
ni/uk/cj User ni/ UAV uk/ content item cj Mj Size of content cj (in bits)

R =
[
rij

]
Nc×C

Content demand indicator, rij is defined in (1) S =
[
sjk

]
C×U

UAVs’ content storage indicator, sjk is defined in (2)
L Size of the raw data gathered by a sensing user H Size of the uncorrelated data (information) of all sensing users

η = [ηi]Ns×1 Sensing users activation decision variable, ηi is defined in (5) H(η) Size of information of the active sensing users
ρ Data correlation extent parameter ℓi/ςi Task size/number of CPU cycles to compute one bit of user ni ∈ Nm

hik Communication channel vector between a user ni and a UAV uk ψk = {xk, yk, zk} Cartesian coordinates of the placement location of uk
dik = ∥ψk − ψ̄i∥ Distance between the user ni and UAV uk ψ̄i = {x̄i, ȳi, 0} Cartesian coordinates of user ni

λ0 Path loss at the reference distance of 1 meter β/F Path loss exponent/Rician factor
Pk/Fk/Ak Transmit power/computing speed/number of antennas of UAV uk h̃LoS

ik /h̃NLoS
ik LoS/NLoS components of the channel hik

ϕik Angle between user ni and UAV uk µ = [µik]N×U User-UAV association decision variable, µik is defined in (9)
Pik The allocated transmit power for user ni at UAV uk wikT Beamformer for user ni at UAV uk

P ≜ [p1, · · · , pK ] Power allocation decision with pk = [P1k, · · · , PNk]
T γik(η,µ,ψ) Signal-to-interference-plus-noise ratio at user ni from UAV uk

Rik(η,µ,ψ) Data rate at user ni from UAV uk γ̄ik(η,µ,ψ) Signal-to-interference-plus-noise ratio at UAV uk from user ni

R̄ik(η,µ,ψ) Data rate at UAV uk from user ni V Travelling speed of the UAV
P (prof)/P (ind) Blade profile/induced power of the UAV in hovering status ϖ Rotor blade’s tip speed

v0 Hovering mean rotor-induced velocity δ0/ζ Fuselage drag ratio/rotor solidity
ς/ξ Air density/rotor disc area P (hov) Hovering power of the UAV
ψ0
k Docking location of UAV uk Emov

k (ψ) Energy consumption of moving UAV uk from ψ0
k to ψk

Ehov
k (η,µ,ψ, f,P) Energy consumption of UAV uk while hovering at ψk Tik(µ, f) Task offloading latency from user ni to UAV uk

fk ≜ [f1k, · · · , fNmk] Computing resource allocation decision at uk fij Computational speed allocated to ni at uk
Ecomp
k (µ, f) Computing energy consumption of the CPU of UAV uk E tra

k (µ,ψ,P) Transmission energy consumption of UAV uk
Ek(η,µ,ψ,f,P) Total energy consumption of UAV uk zmin/zmax Minimum/maximum allowable altitude limits of UAV uk
G ≜ {V, E,W} Graph model with V vertices, E edges, and W weight of the edges Vc/Vs/Vm Vertices sets of content/sensing/ MEC users

wik(ι̂) The weight of the edge i, k at the ι̂-th step Vu Vertices sets of the UAVs
Q Number of iterations in Algorithm 3 I The amount of the required information by the sensing tenant

networks. The objective was to reduce the task computing
delay and energy consumption under constraints on allowable
task completion time and compliance with resource limita-
tions. A two-stage optimization algorithm was developed to
optimize the task offloading decision and resource allocation
of the collaborative computing system. In [19], a hierarchical
aerial MEC network architecture was considered to improve
the quality of user experiences. A bi-level UAV-enabled MEC
network was deployed to provide continuous MEC services to
ground users with variable demands. An optimization problem
was formulated to minimize the utility of all users. The
stability of task queue backlogs and energy consumption
budgets at users and UAVs were considered. In [20], a multi-
domain network slicing scheme for satellite-airborne-terrestrial
edge computing networks was considered. Each slice has
configured to include terrestrial-airborne, terrestrial-satellite,
or terrestrial-airborne-satellite domain typologies based on the
resources availability. The paper optimized the slice configura-
tion selection, routing, and resource allocation. In [21], a UAV
network slicing framework was considered in which a system
controller can turn on and off the computing elements at the
UAVs, with the possibility of offloading jobs to other UAVs.
In [16], a hierarchical UAV slicing framework that operates at
two different time-scales was studied. The problem of inter-
slice resource management was formulated as a mixed integer
nonlinear program and a stochastic game with the objective of
maximizing the total transmission rate. The aforementioned
works did not consider providing multiple services using a
shared UAV networks, with each service has its own require-
ments.

This paper develops a framework to enable a content
dissemination tenant, a sensing data gathering tenant, and an
MEC tenant to share a set of UAVs to provide services to
their users. The content dissemination tenant aims to deliver

the required content to each of its subscribers or users. The
objective of the sensing data gathering tenant is to gather a
sufficient amount of uncorrelated data from his users while
the MEC tenant provides computing services. The developed
framework enables the software-defined networking (SDN)/
network function virtualization (NFV) controller to satisfy
the tenants’ requirements with minimum energy consumption.
As the network conditions and/or the tenants’ requirements
change, the developed framework enables the SDN/NFV to
decide the number of deployed UAVs and their deployment
locations, allocate the transmitted power and the computation
resources of the deployed UAVs, select the active sensing
devices, and obtain the user-UAV association. The main con-
tributions of this paper can be summarized as follows:

• A network slicing framework is developed to share a
multi-UAV network by content dissemination, sensing
data gathering, and MEC tenants.

• An energy minimization problem is formulated to guaran-
tee that all the required contents are delivered, sufficient
information is gathered, and all the MEC users are served.
The UAVs’ deployment locations, the UAVs’ power al-
location, computing resources allocation, and the user-
UAV association are optimized. Considering the spatial
correlation among the users and the trade-off between
the consumed energy and the number of active sensing
users, the sensing users’ activation is also optimized.

• A solution inherited from graph theory is devised, in
which the Lagrange approach derives the transmission
power and computing resource allocation expressions.

The remainder of this paper is organized as follows. Section
II presents the considered system model and discusses data
gathering, communication, and energy consumption models.
In Section III, the energy consumption minimization problem
is formulated. Section IV introduces the proposed heuristic so-
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lution. Section V discusses the simulation results, and Section
VI concludes the paper.

Notation: Lower case and upper case boldface letters denote
vectors and matrices, respectively. (·)H and (·)T represent the
Hermitian and the transpose operators, respectively. The main
notations used throughout this paper are summarized in Table
I.

Fig. 1. System model with K ≤ U deployed UAVs.

II. SYSTEM MODEL

As shown in Fig. 1, a network slicing framework is con-
sidered where three tenants (i.e., services) provide content
delivery, sensing data gathering, and MEC services to a set
of N = {ni}Ni=1 of N users. The UAV-enabled network
consists of a set U = {uk}Uk=1 of U UAVs; each UAV operates
in full duplex mode with a maximum transmit power Pk,
computing speed Fk, and Ak antennas. The tenants share K
UAVs, where K ≤ U is the number of deployed UAVs. Each
tenant serves its own subset of users N = {Nc,Ns,Nm},
where Nc = {ni}Nc

i=1 represents the content delivery users,
Ns = {ni}Nc+Ns

i=Nc+1 is the set of sensing users, and Nm =
{ni}Ni=Nc+Ns+1 is the MEC users where N = Nc+Ns+Nm.
The content delivery tenant serves its users by delivering
a catalog C = {cj}Cj=1 of C contents each of size Mj

bits. A content delivery user is interested in downloading a
content. To represent the users’ content demand, let us define
R =

[
rij
]
Nc×C

such that

rij =

{
1, if ni is interested in downloading cj ,
0, otherwise.

(1)

Furthermore, let us define the UAVs’ content storage indicator
S =

[
sjk
]
C×U such that

sjk =

{
1, if cj is stored in uk,
0, otherwise.

(2)

Additionally,
∑C
j=1 sjk ≥ 1,∀cj ∈ C to reflect the fact that

each content should be stored in at least one UAV.
The sensing tenant gathers data from its users, where each

user can obtain L bits of raw data. Activating all the users is
an inefficient approach as their data could be correlated; this
approach yields more interference at the UAVs and increases
their travelling and hovering time. The spatial correlation,

which is a result of the close proximity between the sensing
users, is the main cause of data correlation. Consequently, the
sensing tenant aims at gathering uncorrelated data (referred
to as information in this paper). An empirical study has been
performed in [22] to quantify the total gathered information
from a set of Ns sensing users using a constructive iterative ap-
proach. Since a sensing user generates L (bits) of raw data, the
information provided by the first sensing user isH1 = L (bits).
The information collected by the first and second active sens-

ing users can be obtained as H2 = L +

[
1− 1

(d̄1,2/ρ+1)

]
L,

where d̄1,2 is the Euclidean distance between the locations of
the first and second active sensing users and ρ is a parameter
that depends on the correlation extent in the sensed data [22].
The information of the first three active sensing users can be
obtained as

H3 = L+

1− 1(
¯̄d2/ρ+ 1

)
L+

1− 1(
¯̄d3/ρ+ 1

)
L,

(3)
where ¯̄d2 = d̄1,2 and ¯̄d3 = min{d̄1,3, d̄2,3}. Consequently,
the maximum information that can be gathered by Ns sensing
users can be expressed as

H = L+ L

Ns∑
i=2

[
1− 1

¯̄di/ρ+ 1

]
, (4)

where ¯̄di is the minimum distance between the location of the
sensing user ni and all other previously considered users nι
∀ι = 1, 2, . . . , i− 1. Let us define the sensing users activation
decision η = [ηi]Ns×1 such that

ηi =

{
1, if ni is active,
0, otherwise.

(5)

For a given sensing users activation decision η, the gathered
information of the active sensing users (users with ηi = 1)
can be obtained as

H (η) = L+ L

Ns∑
i=2

ηi

[
1− 1

di (η) /ρ+ 1

]
, (6)

where di (η) is the minimum distance between the location
of active user ni and all active users with ηι = 1 ∀ι =
1, 2, . . . , i− 1.

Each MEC user offloads a task {ℓi, ςi} ∀ ni ∈ Nm, where
ℓi is the task size (in bits) and ςi is the number of CPU cycles
required to compute one bit.

A. Communication Model

The communication channel between a user ni and a UAV
uk is modelled as

hik =

√
λ0d

−β
ik

[√
F

F + 1
h̃LoS
ik +

√
1

F + 1
h̃NLoS
ik

]
, (7)

where dik = ∥ψk−ψ̄i∥ is the distance between the user ni and
UAV uk, where ψk = {xk, yk, zk} are the Cartesian coordi-
nates of the placement location of uk and ψ̄i = {x̄i, ȳi, 0}
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represent the Cartesian coordinates of user ni. λ0 is the
path loss at the reference distance of 1 meter, β is the path
loss exponent, F denotes the Rician factor, h̃NLoS

ik ∈ CAk×1

represents the non-line-of-sight scattering components mod-
elled by independent random Rayleigh distributed entries, and
h̃LoS
ik ∈ CAk×1 is the LoS component. By considering a

uniform linear array with the inter-element spacing being one-
half the carrier wavelength, the LoS component of the channel
from the device ni to the UAV-mounted server uk is modelled
as

h̃LoS
ik = [1, e−

√
−1π cosϕik , · · · , e−

√
−1π(Ak−1) cosϕik ], (8)

where ϕik is the angle between user ni and the UAV uk, such
that cosϕik = xk−x̄i

∥ψk−ψ̄i∥
. Each UAV operates on its orthogonal

channel and is deployed to serve a subset of users Nk ⊆ N ,

such that
K⋃
k=1

Nk = N . Let us define the user-UAV association

decision µ = [µik]N×U such that

µik =

{
1, if ni is served by uk,
0, otherwise.

(9)

Let P ≜ [p1, · · · ,pK ] with pk = [P1k, · · · , PNk]T as the UAV
transmit power allocation decision of UAV uk, the signal-to-
interference-plus-noise ratio (SINR) at user ni to decode the
message sent by uk can be expressed as

γik(µ,ψ,P) =
µikPik|hHikwik|2

N∑
i′=1
i′ ̸=i

µi′kPi′k|hHikwi′k|2 + σ2
i

, (10)

where Pik is the allocated power by the UAV uk to commu-
nicate with user ni and wik is the beamforming vector, which
can be obtained using the maximum ratio transmission scheme
as follows

wik =
hik
∥hik∥

. (11)

The corresponding data rate is

Rik(µ,ψ,P) = Bk log2
(
1 + γik(µ,ψ,P)

)
, (12)

where Bk is the downlink bandwidth of UAV uk. The SINR
of user ni at UAV uk can be expressed as

γ̄ik(η,µ,ψ) =
ηiµikP̄i|hHikw̄ik|2

N∑
ι=1
ι̸=i

ηιµιkP̄ι|hHikw̄ιk|2 + σ2
k

, (13)

where P̄i is the transmitted power of user ni and w̄ik is
the beamforming vector, which can be obtained using the
maximum ratio combining scheme. The uplink bandwidth is
B̄k, and thus the data rate from ni to uk is expressed as

R̄ik(η,µ,ψ) = B̄k log2
(
1 + γ̄ik(η,µ,ψ)

)
. (14)

B. Energy Consumption Model

The UAV consumes its energy to realize the following
primary functions: travelling, hovering, and communication.
According to [23], the movement power consumption of a
UAV can be modelled as

P (mov) =P (prof)

[
1 +

3V 2

ϖ2

]
+ P (ind)

√1 +
V 4

4v40
− V 2

2v20

 1
2

+
1

2
δ0ςζξV

3,
(15)

where V is the travelling speed of the UAV, P (prof) and P (ind)

are the power of the blade profile and induced power in
hovering status, respectively. The rotor blade’s tip speed is rep-
resented by ϖ, v0 is the hovering mean rotor-induced velocity,
δ0 and ζ denote the fuselage drag ratio and rotor solidity,
respectively. Finally, ς and ξ represent the air density and rotor
disc area, respectively. It is worth mentioning that the power
consumed by the UAV in hovering P (hov) can be obtained by
setting V = 0 in (15), which leads to P (hov) = P (prof)+P (ind)

[23]. Consequently, the energy consumption of flying UAV uk
from its docking location ψ0

k to the placement location ψk is
modeled as [23], [24]

Emov
k (ψ) =

P (mov)

V
∥ψ0

k − ψk∥. (16)

The energy consumption of the UAV uk while hovering at
its placement location can be expressed as

Ehov
k (η,µ,ψ, f,P) =P (hov) max

∀ni∈N

{µik C∑
j=1

rijMj

Rik(µ,ψ,P)
,

ηiµikL

R̄ik(η,µ,ψ)
, Tik(µ, f)

}
,

(17)

where Tik(µ, f) is the offloading latency which can be ex-
pressed as

Tik(µ, f) =

µik
(

ℓi
R̄ik

+ ℓiςi
fik

)
, ∀ni ∈ Nm,

0, otherwise,
(18)

where fij is the computational speed allocated to ni at uk
(cycle per second). The computing resource allocation decision
at uk is fk ≜ [f1k, · · · , fNmk], which satisfies

∑Nm

i=1 fik ≤ Fk,
where Fk is the total computing resource of uk. The computing
power consumption can be modeled as P (comp) = κf3, where
f is the CPU’s computational speed and κ is the effective
switched capacitance depending on the CPU chip architecture
[25]. Consequently, the computing energy consumption of the
CPU of uk is expressed as

Ecomp
k (µ, f) =κ

Nm∑
i=1

ℓiςif
2
ikµ˜̃ik, (19)
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where ˜̃i = i+Nc +Ns. The total energy consumed by UAV
uk can be expressed as

Ek(η,µ,ψ,f,P)=Emov
k (ψ)+Ehov

k (η,µ,f,P)+Ecomp
k (µ,f)

+

Nc∑
i=1

Pikµik
C∑
j=1

rijMj

Rik(µ,ψ,P)︸ ︷︷ ︸
E tra
k (µ,ψ,P)

,
(20)

where E tra
k (µ,ψ,P) is the transmission energy consumed by

the transmitter circuitry of UAV uk. The energy consumed
by the UAV’s receiver circuitry is very small, and it can be
neglected.

III. PROBLEM FORMULATION

Let I ≤ H (in bits) be the minimum amount of information
required to be aggregated to meet the sensing tenant require-
ment. The decision-makers need to satisfy the requirements
of the tenants (aggregate the required information, deliver all
the required contents, and compute the offloaded tasks). The
objective is to minimize the energy consumption by deciding
the number of deployed UAVs K ≤ U and their deployment
locations ψ, selecting the active sensing devices η, allocating
the transmitted power P and the computation resources f, and
determining the user-UAV association µ. The optimization
problem is formulated as follows:

P1 min
η,µ,ψ
P,f,K

K∑
k=1

Ek (η,µ,ψ, f,P) , (21a)

s.t.
U∑
k=1

µik ≥ 1, 1 ≤ i ≤ Nc, (21b)

U∑
k=1

C∑
j=1

µiksjkrij =

C∑
j=1

rij , 1 ≤ i ≤ Nc, (21c)

U∑
k=1

µik = ηi, Nc + 1 ≤ i ≤ Nc +Ns, (21d)

H (η) ≥ I, (21e)
Nc∑
i=1

µikPik ≤ Pk,∀uk ∈ U , (21f)

U∑
k=1

µik = 1, Nc +Ns ≤ i ≤ N, (21g)

Nm∑
i=1

µ˜̃ikfik ≤ Fk,∀uk ∈ U , (21h)

zmin ≤ zk ≤ zmax, 1 ≤ k ≤ K, (21i)
K ≤ U, µik and ηi ∈ {0, 1}, ∀ni ∈ N , uk ∈ U .

(21j)

Constraints (21b) and (21c) guarantee that each content de-
livery user is served by one or more UAVs that store the
requested contents, respectively. Constraint (21d) guarantees
that each active sensing user is served by one UAV. Constraint

(21e) guarantees that sufficient information is gathered. Con-
straint (21f) represents the maximum transit power limit of
each UAV. Constraints (21g) and (21h) guarantee that each
MEC user is associated with a UAV and each UAV allocates
the available computation resources, respectively. Constraint
(21i) guarantees that each deployed UAV hovers within the
allowable altitude limits.

IV. PROPOSED SOLUTION APPROACH

In this section, a heuristic solution is developed to solve
the formulated optimization problem using techniques inher-
ited from the graph theory and the Lagrange approach. The
proposed algorithm is a problem-specific approach that is
designed based on the structure of the optimization problem,
and it provides near-optimum energy consumption minimiza-
tion in the considered system model. The proposed algorithm
optimizes multiple decision variables including the number of
deployed UAVs K ≤ U , their deployment locations ψ and
the active sensing devices η; allocates the transmitted power P
and the computation resources f; and determines the user-UAV
association µ. The computation complexity of the algorithm
is discussed in Section IV.D.

A. Optimizing the Transmission Power Allocation

For a given η,µ,ψ, f, and K, the transmit power allocation
of UAV uk can be obtain by solving the following optimization
problem

P1-P min
Pk

max
∀ni∈Nc

P
(hov)µik

C∑
j=1

rijMj

Rik
, E2

 (22a)

+

Nc∑
i=1

Pikµik

C∑
j=1

rijMj

Rik
,

s.t.
Nc∑
i=1

µikPik ≤ Pk, (22b)

Pik ≥ 0 ∀ni ∈ Nc, (22c)

where E2 is a constant and can be obtained as follows

E2 =P (hov) max
∀ni∈N

{
ηiµikL

R̄ik(η,µ,ψ)
, Tik(µ, f)

}
. (23)

By introducing the auxiliary variables τ ≜ {τ1, · · · , τNc}
and ϱ, the optimization problem P1-P can be rewritten as
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P2-P min
Pk,τ ,ϱ

ϱ+
1

P (hov)

Nc∑
i=1

Pikτi, (24a)

s.t. P (hov)µik

C∑
j=1

rijMj

Rik
= τi,∀ni ∈ Nc, (24b)

τi ≤ ϱ,∀ni ∈ Nc, (24c)
E2 ≤ ϱ, (24d)
Nc∑
i=1

µikPik ≤ Pk, (24e)

Pik ≥ 0 ∀ni ∈ Nc. (24f)

The corresponding Lagrangian function can be written as

L(Pk, τ , ϱ,ν) = ϱ+
1

P (hov)

Nc∑
i=1

Pikτi +

Nc∑
i=1

ν̄i (τi − ϱ)

+

Nc∑
i=1

νi

P (hov)µik

C∑
j=1

rijMj − τiRik

+ ¯̄ν(E2 − ϱ), (25)

where ν ≜ {νi, ν̄i, ¯̄ν} are the Lagrangian multipliers. The
Lagrange dual function can be written as [26, Sec. 5.1.2]

D(ν) = min
Pk,τ ,ϱ

L(Pk, τ , ϱ,ν). (26)

Further, the dual problem can be expressed as

max
ν
D(ν) (27a)

s.t. ν̄i, ¯̄ν ≥ 0. (27b)

The optimum solution should satisfy the following conditions

∂L(Pk, τ , ϱ,ν)
∂Pik

=
τ∗i

P (hov) − νi
∗τ∗i R′

ik = 0,

∂L(Pk, τ , ϱ,ν)
∂τi

=
P ∗
ik

P (hov) − νi
∗Rik + ν̄∗i = 0,

∂L(Pk, τi, ϱ,ν)
∂νi

= P (hov)
C∑
j=1

rijMj − τ∗i Rik = 0,

P ∗
ik ≥ 0,

(28)

where R′
ik ≜ ∂Rik

∂Pik
=

B|hH
ikwik|2

P∗
ik|h

H
ikwik|2+ωi

, with ωi =
N∑
i′=1
i′ ̸=i

P ∗
i′k|hHikwi′k|2 + σ2

i . By setting ϱ = τi and ν̄∗i = 0, the

power allocation can be obtained using (28) as follows

P ∗
ik =


P (hov)ωi

C∑
j=1

rijMj

ϱ∗B|hH
ikwik|2−P (hov)

C∑
j=1

rijMj

, if µik = 1,

0, otherwise.

(29)

Finally, it can be noticed that Pik is monotonically de-
creasing with respect to ϱ and the feasibility range of ϱ

is ϱ∗ ∈ [ϱmin, ϱmax]. The lower limit can be obtained as

ϱmin = max{E2,
P (hov)

B|hH
ikwik|2

C∑
j=1

rijMj∀ni ∈ Nc}. The upper

limit can be obtained as follows. Let us define ϱP as the
value that satisfies (24b) and (24c), which corresponds to
equally allocate the transmission power and can be expressed
as follows

ϱP = max
∀ni∈Nc

P
(hov)

C∑
j=1

rijMj

Rik

 , (30)

where Rik is the data rate of equally allocate the transmission
power (i.e., Pik = Pk/Nc). The upper limit can be obtained as
ϱmax = max{ϱP , E2}. Algorithm 1 illustrates the procedure
of solving Problem P1-P.

Algorithm 1 Transmission power allocation.
1: Input: η,µ,ψ, fk, Pk, and ϵ;
2: Initialize: ϱmin = E2; Pik = Pk/Nc; Obtain ϱP using (30);

ϱmax = max{ϱP , E2}; Set ϱ∗ ← ϱmax;
3: Obtain P ∗

ik, ∀ni ∈ Nc using (29);
4: While |ϱmax − ϱmin| > ϵ do:
5: ϱ = ϱmax+ϱmin

2
;

6: Obtain Pik, ∀ni ∈ Nc using (29);
7: If

∑Nc
i=1 Pik ≤ Pk and Pik ≥ 0 ∀ni ∈ Nc do:

8: ϱmax ← ϱ;
9: P ∗

ik ← Pik;
10: Else do
11: ϱmin ← ϱ;
12: End If
13: Return P ∗

ik, ∀ni ∈ Nc.

B. Optimizing the Computing Resources

For a given η,µ,ψ,P, and K, the edge computing resource
of UAV uk can be obtain by solving the following optimization
problem

P1-f min
fk

max
∀ni∈N

P (hov)µ˜̃ik

(
ℓ˜̃i
R̄˜̃ik

+
ℓ˜̃i ς̃̃i
f
ĩ̃ik

)
, E1

 (31a)

+ κ

Nm∑
i=1

ℓ˜̃i ς̃̃if
2
˜̃ik
µ˜̃ik,

s.t.
Nm∑
i=1

µ˜̃ikf˜̃ik ≤ Fk, (31b)

f˜̃ik ≥ 0 ∀ni ∈ Nm, (31c)

where E1 is a constant and can be obtained as follows

E1 =P (hov) max
∀ni∈N

{µik C∑
j=1

rijMj

Rik(µ,ψ,P)
,

ηiµikL

R̄ik(η,µ,ψ)

}
.

(32)

By introducing the auxiliary variable λ, the optimization
problem P1-f can be rewritten as follows



7

P2-f min
fk,λ

λ+ κ

Nm∑
i=1

ℓ˜̃i ς̃̃if
2
˜̃ik
µ˜̃ik, (33a)

s.t. P (hov)µ˜̃ik

(
ℓ˜̃i
R̄˜̃ik

+
ℓ˜̃i ς̃̃i
f˜̃ik

)
≤ λ,∀ni ∈ Nm (33b)

E1 ≤ λ, (33c)
Nm∑
i=1

µ˜̃ikf˜̃ik ≤ Fk, (33d)

f˜̃ik ≥ 0 ∀ni ∈ Nm. (33e)

The corresponding Lagrangian function can be written as

L(fk, λ,χ) = λ+ κ

Nm∑
i=1

ℓ˜̃i ς̃̃if
2
˜̃ik
µ˜̃ik + χ1 (E1 − λ)

+

Nm∑
i=1

χ̄i

P (hov)µ˜̃ik

(
ℓ˜̃i
R̄˜̃ik

+
ℓ˜̃i ς̃̃i
f˜̃ik

)
−λ

 ,

(34)

where χ ≜ {χ1, χ̄1, · · · , χ̄Nm
} represents the Lagrangian

multipliers. The Lagrange dual function can be expressed as
[26, Sec. 5.1.2]

D(χ) = min
fk,λ
L(fk, λ,χ). (35)

The dual problem can be formulated as

max
χ
D(χ) (36a)

s.t. χ1, χ̄1, · · · , χ̄Nm ≥ 0. (36b)

Given that µ˜̃ik is a binary variable and there is no need to
allocate computing resources at uk for the users that are not
associated with uk, it can be deduced that f∗˜̃ik = 0 for all
users with µ˜̃ik = 0. For a fixed Lagrangian multipliers and
by applying the Karush-Kuhn-Tucker (KKT) conditions and
forcing (33b) into equality, a solution for P2-f should satisfy
the following conditions

∂L(fk, λ,χ)
∂f˜̃ik

= 2κℓ˜̃i ς̃̃if
∗
˜̃ik
− χ̄∗

iP
(hov)

ℓ˜̃i ς̃̃i
f∗˜̃ik

2 = 0,

∂L(fk, λ, χ)
∂χ̄i

= P (hov)

 ℓ˜̃i
R̄˜̃ik

+
ℓ˜̃i ς̃̃i
f∗˜̃ik

−λ∗ = 0,

f∗˜̃ik
≥ 0.

(37)

After simple manipulations and keeping in mind that f∗˜̃ik is a
positive value, a solution for P2-f can be obtained as

f∗˜̃ik
=


ℓ˜̃iς˜̃iP

(hov)

λ∗−P (hov) ℓi
R̄ik

, if µ˜̃ik = 1,

0, otherwise.
(38)

Finally, it can be noticed that f˜̃ik is monotonically de-
creasing with respect to λ and the feasibility range of λ

is λ∗ ∈ [λmin, λmax]. The lower limit can be obtained as
λmin = max{E1, P

(hov) ℓi
R̄ik
∀ni ∈ Nm}. The upper limit

can be obtained as follows. Let us define λF as the value
that satisfies (33b), which corresponds to equally allocate the
available computing resources and can be expressed as follows

λF = max
∀ni∈Nm

P (hov)

(
ℓ˜̃i
R̄˜̃ik

+
ℓ˜̃i ς̃̃i

Fk/Nm

) . (39)

The upper limit can be obtained as λmax = max{λF , E1}.
Algorithm 2 illustrates the procedure of solving Problem P1-
f.

Algorithm 2 Optimizing the computing resources.
1: Input: η,µ,ψ,P, Fk, and ϵ;
2: Initialize: λmin = E1; Obtain λF using (39); λmax =

max{λF , E1}; Set λ∗ ← λmax;
3: Obtain f∗

˜̃ik
, ∀ni ∈ Nm using (38);

4: While |λmax − λmin| > ϵ do:
5: λ = λmax+λmin

2
;

6: Obtain f˜̃ik, ∀ni ∈ Nm using (38);
7: If

∑Nm
i=1 f˜̃ik ≤ Fk and f˜̃ik ≥ 0 ∀ni ∈ Nm do:

8: λmax ← λ;
9: f∗

˜̃ik
← f˜̃ik;

10: Else do
11: λmin ← λ;
12: End If
13: Return f∗

˜̃ik
, ∀ni ∈ Nm.

C. Graph-based Solution

To find the optimized number of deployed UAVs, the
sensing users activation, and the user-UAV association, a
representation of all feasible solutions should be first designed.
A quadripartite graph model is proposed as G ≜ {V, E ,W},
where V represents the vertices, E represents the edges, and
W is the weight of the edges.
Vertex Set: The vertices set consists of four subsets V =
{Vc,Vs,Vm,Vu}. The subset Vc ≜ {vci } represents the con-
tent delivery users such that |Vc| = Nc, Vs ≜ {vsi } represents
the sensing users such that |Vs| = Ns, and Vm ≜ {vmi }
represents the MEC users such that |Vm| = Nm. The subset
Vu ≜ {vuk} represents the UAVs such that |Vu| = U .
Association Edges: Each vertex in the subsets Vs and Vm
is connected with all the vertices of Vu as a sensing user or
MEC user can be served by any UAV. An edge connects a
vertex vci ∈ Vc and vuk ∈ Vu if rijsjk = 1, as the content
delivery user can be served only by the UAVs that store its
required content. It is worth noting that the total number of
vertices in the graph G is N+U , and keeping in mind that G is
quadripartite and no edge is needed within the users’ vertices,
the number of edges is upper-bounded by NU . This makes the
graph size manageable for a reasonably large number of users
and UAVs. Figure 2 illustrates an example of the graph model
with three UAVs, five sensing users, five content delivery users,
and four MEC users. The UAVs’ stored contents and the users’
demands are as follows
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R=

n1 n2 n3 n4 n5


0 0 1 0 0 c1
0 0 0 0 1 c2
1 0 0 0 0 c3
0 1 0 1 0 c4

;S=

u1 u2 u3


1 1 1 c1
0 1 0 c2
1 1 0 c3
1 0 1 c4

.

(40)

Fig. 2. User-UAV association graph of 3 UAVs, 5 sensing, 4 computing, and
5 content delivery users with the storage and demand in (40).

Edges’ Weight: The weight of each edge should reflect the
energy consumption of associating the corresponding user and
UAV. The weights of the graph W = [wik]N×U are updated
as the users are associated, such that the weight of each edge
wik(ι̂) at the ι̂-th step is assigned as follows

wik(ι̂) =



∆(ι̂)
P (mov)dik(ι̂)

V +P (hov)L
R̄ik(ι̂)

, if ni ∈ Ns,

1

P (mov)dik(ι̂)

V +P (hov)
(

ℓi
R̄˜̃ik

(ι̂)
+

ℓiςi
f˜̃ik

) , if ni ∈ Nm,

∑C
j=1 rijsjk

P (mov)dik(ι̂)

V +
(P (hov)+Pik)

∑C
j=1

rijsjkMj

Rik(ι̂)

, if ni ∈ Nc,

(41)
where ∆(ι̂) = 1 if H(ι̂) < I , with H(ι̂) as the information
gathered by the already associated sensing devices at the ι̂-
th step; otherwise ∆(ι̂) = 0. It is worth noting that the
denominators in the first, second, and third lines of (41)
represent the energy consumption of associating the UAV
uk with the sensing user, MEC user, and content delivery
user ni, respectively. Consequently, an edge with the highest
weight represents the lowest energy consumption of a user-
UAV association.

The optimum altitude of the deployed UAV zk depends
on the required effective coverage area, with a circle whose
center is (xk, yk) and whose radius is the distance be-
tween the center and the farthest associated user. Let ϑik =√
(x̄i − xk)2 + (ȳi − yk)2 be the distance between user ni

and the x-y location of uk, the optimum altitude can be
expressed as zk = ϑ̂ik tan(θopt), where ϑ̂ik = max

1≤i≤N
{µikϑik}

and θopt = 75.52◦, 54.62◦, 42.44◦, and 20.34◦ for the high-
rise urban, dense urban, urban, and suburban environments,

respectively [27]. Keeping in mind the attitude limits in (21h),
the altitude of UAV uk is obtained as follows

zk =


zmax, if ϑ̂ik tan(θopt) ≥ zmax,

zmin, if ϑ̂ik tan(θopt) ≤ zmin,

ϑ̂ik tan(θopt), otherwise.
(42)

Algorithm 3 illustrates the proposed solution approach to
solve P1. The algorithm starts with constructing the user-
UAV association graph. It is worth noting that according to
(41), the initial weights equal zero for the edges between the
content delivery users and the UAVs that do not store the
corresponding required contents (i.e.,

∑C
j=1 rijsjk = 0 for

each of those edges). The algorithms iterates Q iterations. At
each iteration, the algorithm calculates the weights using (41)
based on the location of the UAVs and the equally allocated
computing resource and transmit power of the UAVs (lines 6-
7). The edge with the maximum weight wîk̂(ι̂) is selected (line
11), user nî is associated with UAV uk̂, and the deployment
location of uk̂ is updated to be closer to all associated users
(lines 11-13). If the associated user is a sensing user, it is set as
an active user and the amount of the gathered data is updated
(lines 15-17). The corresponding weights of the selected users
are set to zero and all the remaining nonzero weights are up-
dates based on the new location of the UAV (lines 18-19). The
algorithm continues while there exists an edge with non-zero
weight. Once all the users are associated, the transmit power
and computing resources of each deployed UAV are obtained
using Algorithm 1 and Algorithm 2, respectively (lines 22-23).
The algorithm examines the value of the objective function at
each iteration and returns the best solution (lines 24-29). It
is worth mentioning that once the solution is obtained, the
SDN/NFV controller informs each of the deployed UAVs of
their deployment location, the user-UAV association, and the
transmit power and computation resource allocation decisions.

D. Solution Computational Complexity Analysis

Constructing the user-UAV association graph requires
O(NU) operations, while keeping in mind that C ≤ N ,
calculating the corresponding weights using (41) requires
O(N2U) operations. Obtaining the transmission power al-
location using Algorithm 1 requires O(log(ϱmax−ϱmin

ϵ )Nc)
operations. Further, optimizing the computing resources us-
ing Algorithm 2 requires O(log(λmax−λmin

ϵ )Nm) operations.
Keeping in mind that U ≤ N , the computational complex-
ity of solving P1 using Algorithm 3 can be expressed as
O(Q[N3 + log(ϱmax−ϱmin

ϵ )Nc + log(λmax−λmin

ϵ )Nm]). It is
worth noting that the computational complexity of Algorithm
3 is remarkably less than that of obtaining the solution of
P1 using exhaustive search (which is described in Section V),
which can be expressed as O(UN2Ns [log(ϱmax−ϱmin

ϵ )Nc +
log(λmax−λmin

ϵ )Nm]).

V. SIMULATION RESULTS

This section introduces simulation results to evaluate the
considered network slicing framework and the developed
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Algorithm 3 A heuristic algorithm for energy-efficient UAV-
enabled network slicing.

1: Input: R, S, I , ψ̄i,∀ni ∈ N ,N , ψk(0), Pk, Fk, ∀uk ∈ U ;
2: Construct the user-UAV association graph;
3: Set Omin ←∞;
4: For q = 1 to Q do
5: Set µ← [0]N×U and η ← [0]Ns×1; ι̂ = 0; H(0) = 0;

6: Calculate dik(0) =
√
(xk − x̄i)2 + (yk − ȳk)2;

7: Set f˜̃ik = Fk/Nm; Pik = Pk/
∑Nc

i=1

∑C
j=1 sjkrij ;

8: Obtain wik(0) ∀ni ∈ N ,∀uk ∈ U , using (41);
9: While ∃ wik(ι̂) > 0 ∀i = 1, . . . , N, k = 1, . . . , U do

10: ι̂ = ι̂ + 1; dik(ι̂) ← dik(ι̂ − 1); wik(ι̂) ← wik(ι̂ − 1),
∀ni ∈ N ,∀uk ∈ U ;

11: Select î and k̂ such that

(̂i, k̂) = arg max
1≤i≤N
1≤k≤U

{wik(ι̂)}.

12: Set µîk̂ = 1; xk̂(ι̂) =
∑N

i=1 µik̂x̄i∑N
i=1 µik̂

, yk̂(ι̂) =
∑N

i=1 µik̂ȳi∑N
i=1 µik̂

;

13: dik̂(ι̂) =

√(
xk̂(ι̂)− x̄i

)2
+
(
yk̂(ι̂)− ȳk

)2 ∀ ni ∈ N ;
14: Obtain zk̂ using (42);
15: If nî ∈ Ns do
16: Set ηî = 1; Calculate H(ι̂) and ∆(ι̂);
17: End If
18: Set wîk(ι̂) = 0 ∀k = 1, · · · , U ;
19: Update wik(ι̂) if wik̂(ι̂) ̸= 0, ∀ni ∈ N , uk ∈ U using

(41);
20: End While
21: Set K = |K|, where K is a set of deployed UAVs,

uk ∈ K if ∃µik = 1,∀ni ∈ N ;
22: Obtain Pk ∀uk ∈ K using Algorithm 1;
23: Obtain fk ∀uk ∈ K using Algorithm 2;
24: Calculate the objective O =

∑K
k=1 Ek (η,µ,ψ, f,P);

25: If O < Omin do
26: Omin = O; K∗ = K;
27: µ∗ ← µ,; η∗ ← η; P∗

k ← Pk; f∗k ← fk; and ψ∗
k ← ψk;

28: End If
29: End For
30: Return K∗, µ∗, η∗, P∗

k, f∗k, and ψ∗
k.

graph-based solution. In obtaining these results, it is assumed
that the users are randomly placed within a square area of
1.2 × 1.2 km2. One-third of the users are content delivery
users, one-third are sensing tenant users, and one-third are
MEC users. The content storage capacity of a UAV is set as
75% of the required contents and the content storage indicator
matrix S is obtained as a randomly-generated binary matrix,
such that 75% of the elements in each column are ones with
the condition that the sum of each row is greater than or equal
1, to ensure that each content is stored at least in one UAV.
The content demand matrix R is obtained as a randomly-
generated binary matrix with the condition that the sum of each
row equals 1, to ensure that each user requests one content.
Each curve in the figures is obtained as the average of 1000
Monte Carlo simulations. Unless otherwise mentioned, Table

II summarizes the numerical values of the considered system
parameters.

TABLE II
SIMULATION PARAMETERS.

Parameter Value Parameter Value Parameter Value
N 27 U 5 V 12 m/s [23]
Pk 1 W [11] Bk 1 MHz [11] Fk 4 GHz
Mj 500Mbits ρ 102 L 1 Mbits
I 0.75H [4] F 10 [11] β 2.2 [11]
λ0 −30 dB [11] v0 4.03 [23] δ0 0.6 [23]
ς 1.225 kg/m3 [23] ζ 0.05 [23] ξ 0.503 m2 [23]
ℓi 1 Mbits ςi 700× 108 cycle/bit ϵ 0.01
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Fig. 3. Total energy consumption versus the content size with Nc = 3,
Ns = 2, Nm = 2, and U = 3.

Figure 3 illustrates the total energy consumption versus
the size of the contents Mj . Three solution approaches are
illustrated: (I) Random solution: in which all the available
UAVs are deployed, each UAV is placed above a randomly
selected user, each user is associated with the nearest UAV,
all the sensing users are active, and the transmit power and
computing resources are equally allocated to the corresponding
users. (II) Proposed solution approach: which represents the
performance of the graph-based solution in Algorithm 3. (III)
Exhaustive search approach: in which all the possible user-
UAV association and the sensing user activation are examined,
while the transmission power and computing resources are
obtained using Algorithm 1 and Algorithm 2, respectively. It
can be noticed that the proposed solution approach remark-
ably reduces the energy consumption in comparison with the
random solution. On the other hand, the proposed approach
provides close to the optimum solution obtained using the
exhaustive search.

Figure 4 provides insight into the effect of the number of
users and the degree of correlation ρ of the gathered data on
the energy expenditure of the proposed algorithm. It can be
noticed that the energy expenditure increases with the number
of users. It can also be noticed that the energy expenditure
decreases as the degree of correlation increases. This can
be attributed to the fact that as the degree of correlation
increases, the data of the users becomes more correlated,
and thus, fewer sensing users will meet the sensing tenant
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requirement. Furthermore, this behaviour indicates that the
proposed solution approach activates an adequate number of
data-gathering users, and as the degree of correlation increases,
fewer users are activated.

Fig. 4. Total energy consumption versus the degree of correlation ρ and
number of users N .

To illustrate the effect of the number of the available UAVs
and the computing speed, Fig. 5 illustrates the energy expen-
diture performance obtained using the proposed algorithm. It
can be seen that the energy expenditure decreases as more
UAVs are made available, and the floor behaviour occurs
as the number of available UAVs increases. Such behaviour
indicates that the number of deployed UAVs is optimized, and
the proposed solution approach avoids deploying redundant
UAVs, which otherwise lead to higher energy consumption. It
can also be noticed that the energy expenditure increases as
the computing speed decreases, which can be attributed to the
fact that a slower computing speed at the UAV yields a longer
hovering time and more energy consumption.

Fig. 5. Total energy consumption versus the degree of correlation ρ and
number of users N .

To study the effect of the number of deployed UAVs
and their content storage capacity, Fig. 6 shows the energy

consumption versus the number of deployed UAVs. This figure
illustrates a heuristic placement solution, in which the users
are clustered using a K-means clustering technique, and K
UAVs are deployed each serving a cluster of users. Three UAV
content storage capacities are illustrated, such that Γ = 25%,
Γ = 50%, and Γ = 100% imply that each UAV stores one-
fourth, half, and all the contents, respectively. It is worth
mentioning that to guarantee that all contents are available to
users, at least four and two UAVs are deployed for Γ = 25%
and Γ = 50%, respectively. It can be noticed that as the storage
capacity of the UAVs increases, less UAVs are required to be
deployed and the corresponding energy consumption is less.
This is a result of the fact that increasing the UAV storage
capacity enables it to serve more users. Consequently, fewer
UAVs are deployed, and the energy consumed by the deployed
UAVs is less than that of deploying a higher number of UAVs
with redundant stored content. It can be also noticed that
deploying more UAVs increases the energy consumption as
each UAV consumes traveling energy and serves less users.

1 2 3 4 5 6 7 8 9 10
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Fig. 6. Total energy consumption versus the number of deployed UAVs K
with different UAV storage capacity.

The effect of the minimum required information by the data
gathering tenant I is illustrated in Fig. 7. The considered range
of I lies between 0 (which represents the extreme case, in
which the tenant is not interested in gathering any information)
and H (which means the tenant is interested in gathering
all the available information). It can be seen that the energy
consumption increases with I , which can be attributed to the
fact that as I increases, more data-gathering users need to
be activated and served by the UAVs. Furthermore, the figure
depicts different values of the path loss exponent β. As the
value of β increases, more energy is consumed. This is a
result of the fact that increasing the value of the path loss
exponent β reduces the achievable data rate, which leads to
higher hovering time for the UAVs, and thus, increases the
energy consumption. It is worth mentioning that changing the
value of the Rician factor F within a reasonable range does
not noticeably affect the total energy consumption.
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Fig. 7. Total energy consumption versus the minimum required information
by the data gathering tenant I for different values of the path loss exponent
β.

VI. CONCLUSION

This paper has introduced an energy-efficient network-
slicing framework to deliver content and to gather information
to/from the users as well as to provide MEC services. The
MEC tenant serves its users, the content delivery tenant
mandates that each of its users receives the required content,
and the sensing tenant needs to gather a sufficient amount of
uncorrelated information. An energy consumption minimiza-
tion optimization has been formulated to meet the tenants’
requirements. The spatial correlation among the sensing users
has been considered to activate the necessary subset of sensing
users. A graph-based solution with the Lagrange approach
has been developed. Simulation results have shown that the
considered network-slicing framework significantly reduces
the total energy consumption. This energy preservation is
achieved by deploying a sufficient number of UAVs and
optimally placing them, activating an adequate number of
data-gathering users, efficiently associating the users with the
deployed UAVs, and optimally allocating the transmit power
and computing resources. Results also illustrated that the
proposed solution provides performance close to the optimum
one, with remarkably less computation complexity. Utilizing
real-world measurements with mobile users and a time-varying
channel model is an extension for this work, in which a
dynamic control loop approach can be configured based on
the developed framework to handle the real-time dynamic
environment and tenant requirements. This configuration can
be studied in the future.
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