
1

Lists

A simple programming problem:

Write a program to read in a number, n, where 0 ≤ n ≤ 25, and then
read n more integers. After the last integer has been read, output the
numbers in reverse order.

Typical problem: “I need to know in advance how big to make my array.”

Two concepts:
Array An (fixed size) ordered collection of variables referred to by one

name. (A concrete data type.)

List An ordered collection of values. (An abstract data type.)

Arrays can be used to implement lists.

Engineering 4892: List 1: Stacks May 13, 2002

2

Stack

One type of list: Last In, First Out (LIFO)

Operations:

push(x) – add x to the end of the list.

pop – remove the last element in the list.

top – return the last element in the list.

empty – return True if the list is empty.

size – return the number of elements in the list.

Example: reverse.cpp

Engineering 4892: List 1: Stacks May 13, 2002

3

Sequences

A list is modeled by a sequence — a function from a range of integers
(0, 1, 2 . . . n) to of elements of type T (the type of elements in the list).

Notation

• {an} denotes the sequence a0, a1, a2, . . . an

• ai is an element of the sequence

• |α| denotes the length of the sequence α (note: |{an}| = n + 1).

• αx denotes the concatenation of x to α. |αx| = |α| + 1.

• denotes the empty sequence. | | = 0.

Engineering 4892: List 1: Stacks May 13, 2002

4

Stack Specificaiton

Description A LIFO list.
State s: A sequence of type T.
Operations

– stack() — Constructor.
Post: s = , s is the empty sequence.

– s̃tack() Destructor.
– push(T x) — Mutator. Adds x to the top of the stack.

Post: s′ = sx , x is appended to s
– pop() — Mutator. Removes the top element.

Pre: |s| > 0, The stack is not empty.
Post: s′ = s{0,...|s|−2}, The last element of s is removed.

– T top() — Accessor. Returns the top element of the stack.
Pre: |s| > 0, The stack is not empty.
Post: Result = sn ∧ s′ = s, The last element of s is returned and s
is unchanged.

Engineering 4892: List 1: Stacks May 13, 2002

5

– Bool empty() — Accessor. Returns True if the stack is empty.
Post: Result = (|s| = 0), Returns true if the length of s is 0, false
otherwise.

Engineering 4892: List 1: Stacks May 13, 2002

6

Error Handling

What should the program do when something goes wrong?

Three aspects:

1) Detection

– Do it where it’s easiest (often ’low’ level).

2) Reporting — to other parts of the system.

– Mechanism is part of the interface.

3) Recovery/processing

– Often best at system level.
– Don’t (in general) assume the presence of a ’user’ who can respond.
– Don’t assume standard streams are observed.

Engineering 4892: List 1: Stacks May 13, 2002

7

• Pre-condition is false

– Indicates a programmer error on part of calling program.
– Technically any behaviour is correct.
– Usually best to fail quickly and clearly — make sure the fault is

detected and fixed. (assert() works well.)

• Resource limitations, failure of another system

– Unpredictable, but should be expected. (Always check for it.)
– Recover or fail as gracefully as possible.

• Input error

– Check for it when reasonable.
– Processing will depend on UI.

Note: STL pretty much ignores errors (see overflow.cpp and underflow.cpp)

Engineering 4892: List 1: Stacks May 13, 2002

8

Stack Implementation

Array implementation (fixed or dynamic):

s

size

...

topIndex

1 2 3

See IntStack.h and IntStack.cpp

Engineering 4892: List 1: Stacks May 13, 2002

9

Template Implementation

Replacing int with any type, say T, in a few lines makes a different stack:

private:
T *s; // Pointer to begining of the stack.
int size; // Maximum |S|
int topIndex; // Index of top item in the stack.

// ...
s = new(std::nothrow) T[_size];

// ...
Stack::push(T x)

// ...
T Stack::top()

Engineering 4892: List 1: Stacks May 13, 2002

10

Define a class template to tell the compiler to do this substitution for us.

• template <class T> class Stack { — this is a class template with one
parameter (T).

• template <class T> void Stack<T>::push(T x) — a function template.

• Stack<char> s; — create a stack of characters.

• T is an arbitrary identifier.

• There can be more than one template parameter. E.g.,
template <class L, class R> class pair { . . .

• Template parameters don’t have to be type (class) E.g.,
template <class T, int i> class Buffer { . . .

See Stack.h

Engineering 4892: List 1: Stacks May 13, 2002

