
1

Tables

Searching, at best, can be done in O(log(n)) time.

Array indexing is O(1) — can we do information retreival that quickly?

Generalize arrays as tables — may be n-dimensional.

Since memory is 1-dimensional, we need to convert the index (sequence of
integers) to an address:

Row-major ordering elements in the same row are adjacent

Column-major ordering elements in the same column are adjacent

Engineering 4892: Tables July 18, 2003

2

C++ (and most languages) uses Row-major ordering, i.e.,

int A[10][5]; // 10 rows, 5 columns
for (int r = 0; r < 10; r++) {

for (int c = 0; c < 5; c++) {
cout << A[r][c]; // output in order in memory

}
}

The location (address) of A[r][c] is the same as the address of A[0][0] plus
5r + c.

5r + c is an index function — it maps an index to a location

For irregular tables (i.e., rows are of varying lengths) store the offset to the
start of each row in a separate access array.

Several access arrays can be used to give different sort orders for the same
data (e.g., by name, by phone number, by address).

Engineering 4892: Tables July 18, 2003

3

Table Specification (a.k.a. Map)

Description Map from the index set, I, to the base type, T.
State A function F : I 7→ T (Equivalently a set F ⊆ (I×T))
Operations

– table() — Constructor.
Post: F = �, F is the empty set.

– t̃able() — Destructor.
– T retrieve(I i) — Table access.

Post: Result = t s.t. (i , t) ∈ F, Result is the value indexed by i .
– insert(I i ,T t) — Insert (i , t) into F

Post: (i , t) ∈ F′ ∧ ¬(∃r ∈ T, r 6= t ∧ (i , r) ∈ F′), i indexes t in the
new table.

– remove(I i) — Remove (i , t) from F
Post: ¬(∃t ∈ T, (i , t) ∈ F′), The value indexed by i is not in the
table.

Engineering 4892: Tables July 18, 2003

4

• Retrieval should be O(1) time.

• There is no requirement of order on I—traversal of a table doesn’t always
make sense.

• The index set I need not be integers or other numeric type (but we need
to figure out some way to map it to natural numbers).

Engineering 4892: Tables July 18, 2003



5

Hash Tables

sparse table: I is large but the domain is relatively small. (i.e., we don’t
expect to use all of I)

In a hash table many different indicies map to the same location in the
array (called a bucket).

A Hash Function maps from index to bucket.

Characteristics of a good hash function:

• Easy and quick to compute.

• Give an even distribution of actual data throughout table.

• Must be deterministic and stateless—the same argument must always
give the same result.

Engineering 4892: Tables July 18, 2003

6

Example hash functions:

Truncation ignore part of the key, use the rest (e.g., 9530365 maps to
365).

Folding partition key into parts, combine the parts (e.g., 9530365 maps to
(953 + 36 + 5) = 994.

Modular Arithmetic convert to an integer (using one of the above) and
take % # of buckets.

– Distribution is dependent on divisor (# of buckets).
– Choose prime number. Why?

A collision occurs when the bucket is already in use.

Engineering 4892: Tables July 18, 2003

7

Collision Resolution: Open Addressing

When a collision occurs (either insert or retreive) we must choose/search a
new location.

Linear Probing Try the adjacent bucket until we find a space.

Clustering is a problem—buckets tend to fill up in clusters, which increases
probability of collision.

Rehashing Use a second (third, fourth . . . ) hashing function.

Quadratic Probing If h fails, try h + 1, then h + 4, h + 9, . . . , h + i2

If the table size is prime then this will check up to half of the buckets.

Engineering 4892: Tables July 18, 2003

8

Let n be the number of entries in the table and t be the number of buckets.

Load factor (λ = n/t) — the ratio of full buckets to the total # of buckets.
(0 ≤ λ ≤ 1)

• Insertion/retreival becomes slower (more collisions) as λ approaches 1.

• Quadratic probing may overflow if λ ≥ 0.5.

• Worst case insertion/retreival time complexity = O(n).

• When an item is deleted the bucket must be marked specially.

– Empty cells are used to stop probing.
– Need to distinguish between “never been full” and “was full, now

empty”

• Algorithms are complicated by deletion.

Engineering 4892: Tables July 18, 2003



9

Collision Resolution: Separate Chaining

Each bucket is contains a list of elements.

• Space efficient if records are large.

• Overflow is not a problem (i.e., λ is limited only by available memory).

• Deletion is easy.

But . . .

• Overhead for lists (may be significant if records are small).

• Worst case time complexity is still O(n).

Engineering 4892: Tables July 18, 2003

10

Analysis

How many “probes” (comparisons) does it take to retrieve an element?

Chaining

Assume list it has k entries.

Assume uniform distribution: E(k) = n/t = λ

Unsuccessful search will search the whole list E(probes) = λ

Successful search will, on average, search half of it (1
2(k + 1)), but E(k) =

1 + (n− 1)/t ≈ 1 + λ so E(probes) = 1 + λ
2

Engineering 4892: Tables July 18, 2003

11

Open Addressing

Linear probing:

E(probes) =


1
2

(
1 + 1

1−λ

)
if successful

1
2

(
1 + 1

(1−λ)2

)
if unsuccessful

Engineering 4892: Tables July 18, 2003


