
Name: Student #:

Engineering 4892 — Data Structures
Quiz 2

Dr. D. K. Peters
July 10, 2002

Instructions: Answer all questions. Write your answers on this paper. This is a closed
book test, no textbooks, notes, calculators or other aides are permitted.
Total points: 50

1. [12 points] For each of the following trees, fill in “true” or “false” in the appropriate cells
of the table below to indicate if the tree is full, complete, and/or a binary search tree.

M

E

C

D

A

B

Q

T

W

b)M

Q

T

WJ

I

H

F

D

C

a)

M

E

C Q

T

W

B

c) M

Q

T

J W

H

D

d)

Full Complete Binary Search

(a)
(b)
(c)
(d)

2. [3 points] Consider a binary search tree that is initially empty. Using the insertion
algorithm presented in class, which maintains the binary search tree property, but makes
no effort to balance the tree, draw the tree that will result if the following numbers are
inserted in the order given: 5, 8, 1, 7, 3, 2, 6, 9

4892 Quiz 2 1 of 4 Revised: 2003.07.11 09 : 19

Name: Student #:

3. [15 points] Consider a recursive function using backtracking to find a solution to the
following puzzle. You are given two positive integers, initial, representing a number of
marbles, and steps, representing the maximum number of moves permitted. The goal
is to find a sequence of at most steps Moves so that you end up with 91 marbles. Move
is defined as follows,

enum Move { More, GiveBack };

and these are interpreted as follows:

More — Request, and receive, 53 more marbles.

GiveBack — Give back half of the marbles you have. This move is only possible if the
number of marbles you have is even.

If there is a solution, then m should contain the sequence of Moves that get from the initial
value to 91. For example, if initial is 99 and steps is 4, then m should be { More,

GiveBack, GiveBack, More }.

a) [1 points] What is (are) the base case(s) for the recursion?

b) [1 points] What is the variant expression for the recursion?

c) [13 points] Give an implementation of the function.

// Pre: initial >= 0 /\ steps >= 0
// Post: Result -> m is a sequece of moves to get to 91 from initial
// /\ |m| <= steps /\
// !Result -> there is no sequence of moves to get to 91 from initial
// in less than steps steps
bool
goal(int initial, int steps, std::list<Move>& m)
{

4. [10 points] Consider the following partial implementation of a binary tree class. (Note:
Not a binary search tree.) On the following page you are to implement the function
int rSize(BinaryNode<T>* r) const that returns the number of nodes in the tree rooted
at r.

template <class T>
class BinaryNode // The node of the binary tree
{

public:
T key;
BinaryNode* left;
BinaryNode* right;

4892 Quiz 2 2 of 4 Revised: 2003.07.11 09 : 19

Name: Student #:

BinaryNode(BinaryNode *l = 0, BinaryNode* r = 0)
: left(l), right(r) { }

BinaryNode(const T& k, BinaryNode *l = 0, BinaryNode* r = 0)
: key(k), left(l), right(r) { }

};

template <class T>
class BinaryTree
{
public:

enum Status { Ok, NewFail, NoSuchElement, DuplicateElement };
// ...

int size() const;
// Post: result = number of nodes in the tree
Status insert(const T& x);
// Post: x is inserted in the tree keeping it optimally balanced

protected:
BinaryNode<T>* root;
mutable Status err; // Status of the last call.

private:
// ...
int rSize(BinaryNode<T>* r) const;
Status rInsert(BinaryNode<T>*& r, const T& x);

};

/**
* size -- return the number of nodes in the tree
***/
template <class T>
int
BinaryTree<T>::size() const
{
return rSize(root);

}

/**
* insert -- insert an element in the tree, keeping it balanced
*
* Post:
***/
template <class T>
BinaryTree<T>::Status

4892 Quiz 2 3 of 4 Revised: 2003.07.11 09 : 19

Name: Student #:

BinaryTree<T>::insert(const T& x)
{

return rInsert(root, x);
}

a) [7 points] Give the implementation for rSize.

template <class T>
int
BinaryTree<T>::rSize(BinaryNode<T>* r) const
{

b) [3 points] What is the time complexity of your algorithm? (Be sure to state what n
represents).

5. [10 points] Consider the same partial binary tree implementation as given in question 4.
In class I presented an implementation of rInsert that inserted in the shortest sub-tree.
An alternative would be to choose to insert in the sub-tree containing the fewest nodes,
or the left sub-tree if the sub-trees contain equal numbers of nodes.

a) [8 points] Give a recursive implementation of rInsert that inserts in the sub-tree
containing the fewest nodes, or the left sub-tree if equal.

template <class T>
Status
BinaryTree<T>::rInsert(BinaryNode<T>* r, const T& x)
{

b) [2 points] Draw the tree that would result if the integers from 1 to 10 were inserted
in increasing order into an initially empty tree using the above function.

4892 Quiz 2 4 of 4 Revised: 2003.07.11 09 : 19

