Public Safety Aspects
of
Software Engineering

Dennis K. Peters, Phd, P. Eng.

Memorial University
http:/www.engr.mun.ca/~dpeters

October 29, 2002 Engineering 6101: Software Safety

Outline

[0 What is Software Engineering?

[0 Why should it matter to us?

O How can software be unsafe?

O How is SE different from other Engineering?
O Why use Software?

O Approaches to software safety.

October 29, 2002 Engineering 6101: Software Safety

What is Software Engineering?

0 Software project management.
O Programming done by engineers.
O Programming done by anyone.

O A systematic approach to the analysis, design,
implementation and maintenance of software. (zzee
Standard Glossary of Software Engineering Telmino/ogy.)

October 29, 2002 Engineering 6101: Software Safety

Why is SE Important?

0 Software is a component of many systems.

O Engineers are responsible for the behaviour of the
systems they design.

0 Engineers are responsible for their designs, regardless
of how flawed their tools may be.

O Software systems can be quite complex.
[Bad software can kill.

October 29, 2002 Engineering 6101: Software Safety

A Point to Debate

We don't know how to ensure that software is safe, so it
should not be used in systems where its failure might be
dangerous.

October 29, 2002 Engineering 6101: Software Safety

How can Software be Unsafe?

0 Therac-25

O Software controlled nuclear medicine device.

0 Killed several people due to software bugs.
O Airbus A320

[0 *Fly by wire’ plane.

0 Crashes have been attributed to software errors.
O Darlington Nuclear Plant

O Control and safety systems based on software.

October 29, 2002 Engineering 6101: Software Safety

Role of Computers in Disasters

0 Control
O Machine control
O Electrical power systems
O Support for human operations
[Diagnostic equipment
0 Air traffic control
[Data systems
O Design & Manufacturing
0 CAD systems
O Design calculations

October 29, 2002 Engineering 6101: Software Safety

Role of Computers in Disasters
(cont’d)

O Non-physical Dangers
[0 Privacy (personal & corporate)
0 Security
O Financial systems
O Other pitfalls
0 Over-reliance/Over-confidence
0 Information overload
[Inappropriate information presentation
[Trivializing/complicating human roles
O Hiding failures

October 29, 2002 Engineering 6101: Software Safety

How is Software Different?

O No natural internal boundaries
O Requires special skills to choose designs.
[Components can interact in many ways.
[Design is not evident from implementation.
O It's not constructed from materials that obey physical
laws.
O Interpolation is rarely valid.
O Difficult to build in safety margins.
0 Sensitive to minor errors.
0 Doesn't wear out or break.

October 29, 2002 Engineering 6101: Software Safety

How is Software Different?
(cont’d)

0 Possible interactions with other systems are essentially
infinite.

O Very brittle.
[‘Easy’ to change.

October 29, 2002 Engineering 6101: Software Safety 10

Advantages of Software

[Can do things that can't be done with other technology.
[Allows relatively easy increases in accuracy.

[0 Better information displays.

0 Doesn't wear out.

0 Easier to change, especially if there are multiple
installations.

O Can use cheap, mass-produced hardware.
O Smaller.
O Uses less energy.

October 29, 2002 Engineering 6101: Software Safety 11

Approaches to Software Safety

0 Reliability
O Increasing safety requires increasing reliability of software.
0 Evaluating safety of system means estimating the reliability.
O Rigour
[0 Safety requires correctness.
0 Use highly rigorous ‘formal’ methods.
0 Hazard Analysis
[0 Safety means eliminating hazards.
O Work backwards to show impossibility of hazard occurring.

October 29, 2002 Engineering 6101: Software Safety 12

Reliability

O Reliability analysis
O Estimate failure rates by testing.
O Heavily dependent on operational profile.
[“testing can be a very effective way to show the presence of
bugs, but it is hopelessly inadequate for showing their absence.”
(E.W. Dijkstra)
0 Redundant design
0 If one system fails, the other(s) will take over.
[0 Assumes that failures are uncorrelated.

October 29, 2002 Engineering 6101: Software Safety 13

Rigour

O Rigorous construction: derive program from precise
specifications.

0 Verification: show that a program satisfies its
specification.

O Both require that specification be written using
mathematical notation.

October 29, 2002 Engineering 6101: Software Safety 14

Why not natural Language?

While acting as the bus controller, the MDM shall set the indicator to “failed”
upon detection of transaction errors of selected messages to RTs whose FDIR
is not inhibited in two consecutive processing frames within 100 msec of
detection of the second transaction error if; a backup BC is available, the BC
has been switched in the last 20 sec, the SPD card reset capability is inhibited,
or the SPD card has been reset in the last 10 major (10 sec) frames, and
either:

O the transaction errors are from multiple RTs, the current channel has been

reset within the last major frame, or

[the transaction errors are from multiple RTs, the bus channel’s reset
capability is inhibited, and the current channel has not been reset within the
last major frame.

Source: Easterbrook et al,, 1998.

October 29, 2002 Engineering 6101: Software Safety 15

Hazard Analysis

[0 Start by identifying hazards.
0 Work backwards showing how hazards can never
happen.

0 Can be done on code or specifications, or both.
[Premised on assumptions.

October 29, 2002 Engineering 6101: Software Safety 16

Assumptions from Therac-25 HA

O Programming errors have been reduced by extensive
testing on a hardware simulator and under field
conditions on teletherapy units. Any residual software
errors are not included in the analysis.

O Program software does not degrade due to wear,
fatigue, or reproduction process.

0 Computer execution errors are caused by faulty
hardware components and by “soft” (random) errors
induced by alpha particles and electromagnetic noise.

Source: Leveson, 1995

October 29, 2002 Engineering 6101: Software Safety 17

A Point to Debate

We don't know how to ensure that software is safe, so it
should not be used in systems where its failure might be
dangerous.

Do we know how to ensure that software is safe?
O Maybe, but even if we do, the cost is very high.
OShould it be used in systems where its failure might be
dangerous?

O It is being used in safety-critical systems, so what are we going
to do about it?

October 29, 2002 Engineering 6101: Software Safety 18

Bibliography

O S. Easterbrook, R. Lutz, R. Covington, J. Kelly, Y. Ampo
and D. Hamilton, “Experiences Using Lightweight formal
Methods for Requriements Modeling,” IEEE Trans.
Software Engineering, vol. 24, no. 1, pp. 4-14, Jan.
1998.

O N. G. Leveson, Safeware: System Safety and
Computers, Addison-Wesley, 1995.

O P. G. Neumann, Computer-Related Risks, Addison-
Wesley, 1995.

October 29, 2002 Engineering 6101: Software Safety 19

