How is Software Different from Other
Engineering?

e No natural (internal) boundaries.

— Requires special skills to choose designs.
— Components can interact in many ways.

e It's not constructed from materials that obey physical laws.

— Interpolation is rarely valid.
— Difficult to build in safety margins (can't extrapolate).
— Doesn’t wear out or break.

e Possible interactions with other systems (e.g., operating system, other
programs etc.) are essentially infinite.

Engineering 6806: Intro. to Software Engineering 2001.10.02 14:37

Choosing Modules

e Abstraction — The interface to a module should be much simpler than
the implementation.

e Encapsulation (a.k.a. information hiding) — Each module should 'hide’
a design decision, such as

— Implementation of algorithms,
— Interface with some hardware/other system,
— Data representation.

e Strive for simple and small interfaces between modules (low coupling).

e Normally a module should be clearly associated with a single functional
block in the block diagram (high cohesion).

e The decisions to hide are the ones that are most likely to change.

Engineering 6806: Intro. to Software Engineering 2001.10.02 14:37

Steps in Software Engineering

Plan the project

Design the system

— Start at 'high’ level (block diagram)
— Decompose into components (modules/classes)

e Implement

Verify and validate.

Engineering 6806: Intro. to Software Engineering 2001.10.02 14:37

Example Modules

Sensor module: Hides the interface to all sensors.

Inputs HW signals from all sensors.
Outputs Sensor state vector (8 bits) to be used by other modules.

Motor module: Implements control of all motors.

Inputs Motor commands (forward/backward/stop for each motor).
Outputs HW signals to control motors.

What's wrong with this (partial) modularization?

Engineering 6806: Intro. to Software Engineering 2001.10.02 14:37

Better Modules

Tape detection module: Detects presence of the reflective tape.

Inputs HW signals from tape detection sensors.
Outputs Status relative to tape (e.g., on tape, off left, off right, off
front, off all)

Steering module: Controls movement of vehicle.

Inputs Direction command: forward, adj left, adj right, hard left, hard
right, reverse, stop.
Outputs HW signals to drive motors.

Engineering 6806: Intro. to Software Engineering 2001.10.02 14:37

Example Module Design

The steering module is used by all other modules to control the direction of
the motor. If the “forward” command is given, both wheel directions (pin
15 and 18) are set to logic 1 and the PWM is for both wheel speeds (pin
16 and 17) are set to 80% duty cycle. If the “adj left” command is given,
then the left wheel is stopped by setting the left wheel speed to 0% and the
right wheel speed to 80% duty cycle. If the “adj right” command is given,
then the right wheel is stopped by setting the right wheel speed to 0% and
the left wheel speed to 80% duty cycle. For “hard left” or “hard right”
the wheels are turned in opposite directions as appropriate. For “reverse”
both wheel directions are set to logic 0 and the PWMs are set to 80% duty
cycle.

What’s wrong with this?

Engineering 6806: Intro. to Software Engineering 2001.10.02 14:37

Software Design Documentation

Essential components:

e Interface — how to use it
e Behaviour — what does it do

e Relationships (association) — how does it fit within the system
Other documents:

e Test plan & results.

Engineering 6806: Intro. to Software Engineering 2001.10.02 14:37

Module/Class Design Documentation

Interface — How can the module/class be used?

— Methods and their arguments, input and output variables (be specific:
data type, interpretation)

— Does it interact with the environment? (User interface, hardware
signals.)

Behaviour

— How are the outputs related to the inputs (i.e., functional
specification)?

— Use cases, user’s guide

— 'Actors’ may include other modules

Engineering 6806: Intro. to Software Engineering 2001.10.02 14:37

11

Steering Module Internal Design

Hardware signals:

| Signal | Description | Location

L_Dir Left wheel direction, PIC:15,

1 = forward, 0 = reverse | HB:2, HB:7
R_Dir Right wheel direction, PIC:18

1 = forward, 0 = reverse | HB:15, HB:10
L_Speed | Left wheel speed, PIC:16

PWM signal HB:1
R_Speed | Right wheel speed PIC:17

PWM signal HB:9

Outputs:
State L_Dir | R_Dir | L_Speed | R_Speed
(% duty) | (% duty)

Stop 1 1 0 0
Forward 1 1 80 80
AdjLeft 1 1 0 80
AdjRight 1 1 80 0
HardLeft 0 1 80 80
HardRight | 1 0 80 80
Reverse 0 0 80 80

Engineering 6806: Intro. to Software Engineering

BuusauiBug aemyog o3 -osju| :90g9 BuiiesuiBug

2€:%T 20°0T'T00C

3unss| e

suoiloadsu)/smainey e

iSIUBM JUBI|D BY3} JBYM Op 3 SB0(] — uoIepIjep

iOp p|NoYs 1 pies nok 1eym op 31 S90(] — UOIIEIYDA

2001.10.02 14:37

uolepIje 73 UOIIEIYIIDA

[4)

BunisauiBug aemyog o3 -osju| 9089 BuiissuiBug

2€:%T 20°0T'T00T

S2JN30NJ3S BlEp [BUJSIU| —

(7039 1eyomoy}y ‘apod-opnasd) swyioS|y —

ugisap |eusaiu|
sdiysuonejpy

‘swesSelp ssepd uonejuswajdw| —

(uo puadap 3|npouw siyl SP0P SI|NPOW 1BYM *3'1) UOIIE|3J SIS()

10

Better Module Design Documentation
Name: Steering module

Exported types:

Methods: void steer(Direction dir) —

enum Direction { Forward, AdjLeft, AdjRight, HardLeft,

HardRight, Reverse, Stop }

direction of travel to dir.

Behaviour:

— Initial state is Stop.
— Each call to steer changes the output state to
that given by its argument, as follows:

sets the

| dir | Left wheel | Right wheel |

Stop stopped stopped

Forward forward, full | forward, full
AdjlLeft stopped forward, full
AdjRight | forward, full | stopped

HardLeft reverse, full | forward, full
HardRight | forward, full | reverse, full
Reverse reverse, full | reverse, full

Engineering 6806: Intro. to Software Engineering

2001.10.02 14:37

13
Testing
e Plan your tests in advance (when component interface is designed).

— Test environment
— Input
— Expected results

e The goal is to find errors — try hard to break the system.
e Aim for high coverage.

e Don't forget to test the error cases.

Engineering 6806: Intro. to Software Engineering 2001.10.02 14:37

14

Reviews/Inspections

e Check that a product (e.g., code, module documentation) satisfies it's
requirements (without executing it).

e Should be carried out by someone other than the author — ego-less
programming.

e Client reviews are very useful for validation.

e Only method to ensure that documentation is correct (unless formal
techniques are used).

e For code, inspection has been shown to be much more efficient than
testing at finding bugs.

Engineering 6806: Intro. to Software Engineering 2001.10.02 14:37

