
PIC Application Notes

TechTools •  PIC  Application Notes  • Page 23

APPS

Introduction. This application note covers the use of incremental rotary
encoders with PIC microcontrollers. It presents an example program in
TechTools assembly language for reading a typical encoder and dis-
playing the results as an up/down count on a seven-segment LED
display.

Background. Incremental rotary encoders provide a pair of digital signals
that allow a microcontroller to determine the speed and direction of a
shaft’s rotation. They can be used to monitor motors and mechanisms,
or to provide a control-knob user interface. The best-known application
for rotary encoders is the mouse, which contains two encoders that track
the x- and y-axis movements of a ball in the device’s underside.

Rotary encoders generally contain a simple electro-optical mechanism

Figure 2. Sequence of two-bit numbers output by
the phases of a rotary encoder.

0 1 1 0 0 1 1 0 0 1 1

CLOCKWISE

COUNTER CW

Phase 1

Phase 2

1 1 0 0 1 1 0 0 1 1 0

Figure 1. Quadrature waveforms from a rotary
encoder contain directional information.

CLOCKWISE

COUNTER CW

Phase 1

Phase 2

4: Reading Rotary Encoders

Reading Rotary
Encoders



PIC Application Notes

Page 24 • PIC  Application Notes • TechTools

consisting of a slotted wheel, two LEDs, and two light sensors. Each
LED/sensor pair is arranged so that the devices face each other through
the slots in the wheel. As the wheel turns, it alternately blocks and passes
light, resulting in square wave outputs from the sensors.

The LED/sensor pairs are mounted offset relative to one another, so that
the output square waves are offset 90 degrees in phase. This is known
as quadrature, because 90 degrees amount to one-quarter of a full 360-
degree cycle.

This phase relationship provides the information needed to determine
the encoder’s direction of rotation (see figure 1).

PIC
16C54

1

2

3

4

5

6

7

8

9

18

17

16

15

14

13

12

11

10

RA2

RA3

RTCC

MCLR

Vss

RB0

RB1

RB2

RB3

RA1

RA0

OSC1

OSC2

Vdd

RB7

RB6

RB5

RB4

Vcc

NC 10k

220 pF

Vcc

470

470

470

470

470

470

470

NC

Vcc

V+

gnd

p1
p2

Rotary Encoder
(Digi-Key GH6102)

1k 1k

1
4

5
6

a

b

c

d

e

f

g

b

c

d

e

f

g

a

Common-Cathode
LED Display

4: Reading Rotary Encoders



PIC Application Notes

TechTools •  PIC  Application Notes  • Page 25

APPS

The dotted lines in figure 1 indicate a common method of reading
direction. For instance, if phase 1 is high and phase 2 is rising, the
direction is clockwise (CW). If phase 1 is low and phase 2 is rising, the
direction is counterclockwise (CCW).

For the sake of interpreting this output with a PIC or other microcontroller,
it’s probably more useful to look at the changing states of the phases as
a series of two-bit numbers, as shown in figure 2 above.

When the encoder shaft is turning CW, you get a different sequence of
numbers (01,00,10,11) than when it is turning CCW (01,11,10,00). You
may recognize this sequence as Gray code. It is distinguished by the fact
that only one bit changes in any transition. Gray code produces no
incorrect intermediate values when the count rolls over. In normal binary
counting, 11 rolls over to 00. If one bit changed slightly before the other,
the intermediate number value could be incorrectly read as 01 or 10
before settling into the correct state of 00.

Interpreting this code amounts to comparing the incoming sequence to
the known sequences for CW and CCW rotation. A lookup table would
do the trick. However, this approach, while easy to understand, is
inefficient. The shortcut method uses an interesting property of the two-
bit Gray code sequence.

Pick any pair of two-bit numbers from the CW sequence shown in figure
2; for instance, the first two: 10, 11. Compute the exclusive-OR (XOR)
of the righthand bit of the first number with the lefthand bit of the second.
In this case, that would be 0 XOR 1 = 1. Try this for any CW pair of
numbers from the table, and you’ll always get 1.
Now reverse the order of the number pair: 11, 10. XOR the right bit of the
first with the left of the second (1 XOR 1 = 0). Any CCW pair of numbers
will produce a 0.

How it works. The schematic in figure 3 shows a typical rotary encoder
connected to the lower two bits of port RA, and a seven-segment LED
display to port RB. The circuit performs a simple task: the count displayed
on the LED goes up when the control is turned CW, and down when it is
turned CCW. The display is in hexadecimal, using seven-segment
approximations of the letters: A, b, C, d, E, and F.

4: Reading Rotary Encoders



PIC Application Notes

Page 26 • PIC  Application Notes • TechTools

The program begins by setting up the I/O ports and clearing the variable
counter. It gets an initial input from the encoder, which goes into the
variable old, and strips off all but the two least-significant bits (LSBs).

The body of the program, starting with :loop, calls check_encoder and
then displays the latest value of counter on the LED display.

Most of the interesting business happens in check_encoder itself. Here,
the program gets the latest value at the encoder inputs, strips all but the
two LSBs, and XORs the result into a copy of the old value. If the result
is zero, the encoder hasn’t moved since its last reading, and the routine
returns without changing the value of counter.

If the value has changed, the routine moves the value in old one bit to the
left in order to align its LSB with the high bit of the two-bit value in new.
It XORs the variables together. It then examines the bit old.1. If the bit is
1, counter is incremented; if it’s 0, counter is decremented.

Modifications. To avoid ‘slippage’ errors (where a change in encoder
position does not change the counter, or results in the wrong change),
check_encoder must be called at least once every 1/(encoder resolution

* 
max revs per second). For instance, if the encoder might turn 300 rpm

(5 revs per second) and its resolution is 32 transitions per turn,
check_encoder must be called every 1/(32

*
5) seconds, or 6.25 millisec-

onds. For a user interface, bear in  mind that generally the larger the
knob, the slower the input. Substitution of a larger control knob may be
all that’s required to reduce the sampling rate.

In circumstances where electrical noise might be a problem, Microchip’s
PIC data sheet indicates that it might be wise to move the port I/O
assignments to the beginning of check_encoder. Electrostatic discharge
(ESD) from the user’s fingertips, or some other electrical noise, could
corrupt an I/O control register. This would prevent the routine from
reading the encoder.

Program listing. This program may be downloaded from our Internet ftp
site at ftp.tech-tools.com. The ftp site may be accessed directly or
through our web site at http://www.tech-tools.com.

4: Reading Rotary Encoders



PIC Application Notes

TechTools •  PIC  Application Notes  • Page 27

APPS

���������	��
�������������
����������������

; This program accepts input from a rotary encoder through bits RA.0 and RA.1,
; determines the direction of rotation, and increments or decrements a counter
; appropriately. It displays the hexadecimal contents of the four-bit counter on a
; seven-segment LED display connected to port RB.

; Remember to change device info when programming a different PIC.
device pic16c54,rc_osc,wdt_off,protect_off
reset start

encoder = ra
display = rb

; Variable storage above special-purpose registers.
org 8

temp ds 1
counter ds 1
old ds 1
new ds 1

; Set starting point in program ROM to zero.
org 0

start mov !rb, #0 ; Set rb to output.
mov !ra, #255 ; Set ra to input.
clr counter
mov old, encoder
and old, #00000011b

:loop call chk_encoder
mov w, counter
call sevenseg
mov display, w
goto :loop

chk_encoder mov new, encoder ; Get latest state of input bits.
and new, #00000011b ; Strip off all but the encoder bits.
mov temp, new
xor temp, old ; Is new = old?
jz :return ; If so, return without changing

; counter.
clc ; Clear carry in preparation for

; rotate-left instruction.
rl old ; Move old to the left to align old.0

; with new.1.
xor old, new
jb old.1, :up ; If the XOR resut is 1, increment

; counter, otherwise decrement.
:down dec counter

4: Reading Rotary Encoders



PIC Application Notes

Page 28 • PIC  Application Notes • TechTools

skip
:up inc counter

and counter, #00001111b
mov old,new

:return ret

sevenseg jmp pc+w ; display lookup table
retw 126, 48, 109, 121, 51, 91, 95, 112
retw 127, 115, 119, 31, 78, 61, 79, 71

4: Reading Rotary Encoders


