
8893 Concurrent Programming
Assignment #1 — Sample Solutions

Due: Tuesday, February 10 at 0900

1. 2.7 on p. 83.

a) [10 points]

/******************************************************************
* Memorial University of Newfoundland<br>
* 8893 Concurrent Programming<br>
* Assignment 1 Q1 (a) -- Andrews00 q 2.7(a)<br>
* Sample solution.
*
* @version $Revision$ $Date$
* @author Dennis Peters ($Author$)
*
* $RCSfile$
* $State$
*
******************************************************************/
public class assign1_q7a
{

public static final int n = 20; /** Size of arry */
public static final int pr = 4;
/** number of processes. Assumed to be a divisor of n */

/******************************************************************
* @param args the command line arguments (not used)
******************************************************************/
public static void main(String[] args)
{

int[] a = new int[n]; // shared array
Summer[] worker_impl = new Summer[pr];
Thread[] worker = new Thread[pr]; // worker processes
int total = 0; // total of all sums

for (int i = 0; i < n; i++) {
a[i] = (int)Math.round(Math.random()*2*n);
// Fill the array with random values
System.out.print(a[i] + ", ");

}
System.out.println();

1



8893 Concurrent Programming Assignment #1 — Sample Solutions

int stripSize = n/pr;
for (int p = 0; p < pr; p++) {

worker_impl[p] = new Summer(a, p*stripSize, stripSize);
worker[p] = new Thread(worker_impl[p]);

}
for (int p = 0; p < pr; p++) {

worker[p].start();
}
try {

for (int p = 0; p < pr; p++) {
while (worker[p].isAlive()) Thread.sleep(50);
total += worker_impl[p].getSum();

}
}
catch (InterruptedException e) {}

System.out.print("Sum = " + total);
if (Oracle(a, total)) {

System.out.println(" correct!");
} else {

System.out.println(" false!");
}
System.exit(0);

}

/**
* Test to see if the results are correct.
* @return true if the result is correct, false otherwise
*/

private static boolean Oracle(int[] a, int sum)
{

int actual = 0;
for (int i = 0; i < n; i++) {

actual += a[i];
}
return (actual == sum);

}
}

class Summer
implements Runnable

{
private int[] a; /** shared array */
private int first; /** start index for my stripe */

8893 Assignment 1 Solutions 2 Revised: February 16, 2004



8893 Concurrent Programming Assignment #1 — Sample Solutions

private int num; /** number of elements to sum */
private int sum; /** result */

/******************************************************************
* @param a_ the array to be shared.
* @param first_ the index for this instance to start at
* @param num_ the number of elements to sum
******************************************************************/
Summer(int[] a_, int first_, int num_)
{

a = a_;
first = first_;
num = num_;
sum = 0;

}

/******************************************************************
* Method invoked by start.
******************************************************************/
public void run()
{

int indx = first;
for (int i = 0; i < num; i++) {

sum += a[indx];
indx++;

}
}

/******************************************************************
* Return the sum computed by this instance.
******************************************************************/
public int getSum()
{

return sum;
}

}

/******************************************************************
* REVISION HISTORY
*
* $Log$
*
******************************************************************/

8893 Assignment 1 Solutions 3 Revised: February 16, 2004



8893 Concurrent Programming Assignment #1 — Sample Solutions

b) [10 points]

/******************************************************************
* Memorial University of Newfoundland<br>
* 8893 Concurrent Programming<br>
* Assignment 1 Q1 (b) -- Andrews00 q 2.7(b)<br>
* Sample solution.
*
* @version $Revision$ $Date$
* @author Dennis Peters ($Author$)
*
* $RCSfile$
* $State$
*
******************************************************************/
public class assign1_q7b
{

public static final int n = 40; /** Size of arry */
public static final int pr = 5;
/** number of processes. Assumed to be a divisor of n */

/******************************************************************
* @param args the command line arguments (not used)
******************************************************************/
public static void main(String[] args)
{

int[] a = new int[n]; // shared array
Summer worker_impl = new Summer(a, 0, n);
Thread worker = new Thread(worker_impl); // worker process

for (int i = 0; i < n; i++) {
a[i] = (int)Math.round(Math.random()*2*n);
// Fill the array with random values
System.out.print(a[i] + ", ");

}
System.out.println();

worker.start();
try {
while (worker.isAlive()) Thread.sleep(50);

}
catch (InterruptedException e) {}

System.out.print("Sum = " + worker_impl.getSum());
if (Oracle(a, worker_impl.getSum())) {
System.out.println(" correct!");

8893 Assignment 1 Solutions 4 Revised: February 16, 2004



8893 Concurrent Programming Assignment #1 — Sample Solutions

} else {
System.out.println(" false!");

}
System.exit(0);

}

/**
* Test to see if the results are correct.
* @return true if the result is correct, false otherwise
*/

private static boolean Oracle(int[] a, int sum)
{

int actual = 0;
for (int i = 0; i < n; i++) {

actual += a[i];
}
return (actual == sum);

}
}

class Summer
implements Runnable

{
private int[] a; /** shared array */
private int first; /** start index for my stripe */
private int num; /** number of elements to sum */
private int sum; /** result */

/******************************************************************
* @param a_ the array to be shared.
* @param first_ the index for this instance to start at
* @param num_ the number of elements to sum
******************************************************************/
Summer(int[] a_, int first_, int num_)
{

a = a_;
first = first_;
num = num_;
sum = 0;

}

/******************************************************************
* Method invoked by start.
******************************************************************/
public void run()

8893 Assignment 1 Solutions 5 Revised: February 16, 2004



8893 Concurrent Programming Assignment #1 — Sample Solutions

{
if (num <= assign1_q7b.n/assign1_q7b.pr) {

// base case, num < threshold
int indx = first;
for (int i = 0; i < num; i++) {

sum += a[indx];
indx++;

}
} else {

// recursive case, split list in half.
Summer left = new Summer(a, first, num/2);
Summer right = new Summer(a, first+num/2, num-num/2);
Thread left_th = new Thread(left);
Thread right_th = new Thread(right);
left_th.start();
right_th.start();
try {

while (left_th.isAlive()) Thread.sleep(50);
while (right_th.isAlive()) Thread.sleep(50);

}
catch (InterruptedException e) {}
sum = left.getSum() + right.getSum();

}
}

/******************************************************************
* Return the sum computed by this instance.
******************************************************************/
public int getSum()
{

return sum;
}

}

/******************************************************************
* REVISION HISTORY
*
* $Log$
*
******************************************************************/

8893 Assignment 1 Solutions 6 Revised: February 16, 2004



8893 Concurrent Programming Assignment #1 — Sample Solutions

2. 2.13 on p. 85. For this question it was sufficient to simply work through each of the
possibilities, but here are the proof outlines.

a) [5 points]
#{x = 2 ∧ y = 5}
x = x + y;

#{x = 7 ∧ y = 5}
y = x - y;

#{x = 7 ∧ y = 2}
x = x - y;

#{x = 5 ∧ y = 2}
b) [5 points]

#{x = 2 ∧ y = 5}
co

#

{
(x = 2 ∧ y = 5) ∨ (x = 2 ∧ y = −3) ∨ (x = −3 ∧ y = 5)
∨(x = 5 ∧ y = −3) ∨ (x = −3 ∧ y = −8)

}
< x = x + y; >

#


(x = 7 ∧ y = 5) ∨ (x = −1 ∧ y = −3) ∨ (x = 2 ∧ y = 5)
∨(x = 2 ∧ y = −3) ∨ (x = −11 ∧ y = −8)
∨(x = 7 ∧ y = 2) ∨ (x = 2 ∧ y = −3) ∨ (x = 2 ∧ y = −3)
∨(x = 2 ∧ y = 5) ∨ (x = 2 ∧ y = −3) ∨ (x = 5 ∧ y = 2)


//

#

{
(x = 2 ∧ y = 5) ∨ (x = 7 ∧ y = 5) ∨ (x = −3 ∧ y = 5)
∨(x = 2 ∧ y = 5) ∨ (x = 2 ∧ y = 5)

}
< y = x - y; >

#


(x = 2 ∧ y = −3) ∨ (x = 7 ∧ y = 2) ∨ (x = −3 ∧ y = −8)
∨(x = 2 ∧ y = −3) ∨ (x = 2 ∧ y = −3)
∨(x = −1 ∧ y = −3) ∨ (x = −11 ∧ y = −8) ∨ (x = 2 ∧ y = −3)
∨(x = 5 ∧ y = −3) ∨ (x = 5 ∧ y = 2) ∨ (x = 2 ∧ y = −3)


//

#

{
(x = 2 ∧ y = 5) ∨ (x = 7 ∧ y = 5) ∨ (x = 2 ∧ y = −3)
∨(x = 7 ∧ y = 2) ∨ (x = −1 ∧ y = −3)

}
< x = x - y; >

#


(x = −3 ∧ y = 5) ∨ (x = 2 ∧ y = 5) ∨ (x = 5 ∧ y = −3)
∨(x = 5 ∧ y = 2) ∨ (x = 2 ∧ y = −3)
∨(x = 2 ∧ y = 5) ∨ (x = 2 ∧ y = −3) ∨ (x = −11 ∧ y = −8)
∨(x = −3 ∧ y = −8) ∨ (x = 2 ∧ y = −3) ∨ (x = 2 ∧ y = −3)


oc

#
{

(x = 2 ∧ y = −3) ∨ (x = −11 ∧ y = −8) ∨ (x = 5 ∧ y = 2)
}

The pre-conditions for each branch of the co-oc are formed by first considering the
case where that branch executes first (x = 2 ∧ y = 5), and then considering each of
the other possibile sequences. The first two lines of each post-condition are calculated

8893 Assignment 1 Solutions 7 Revised: February 16, 2004



8893 Concurrent Programming Assignment #1 — Sample Solutions

simply by applying the statement to the pre-conditions. The third and fourth lines of
the post-conditions are added to weaken the post-condition so that it is not interfered
with by either or both of the other two statements in either order. When these post-
conditions are conjoined (“anded”) they reduce to give the three possible final states
given.

c) [5 points]
#{x = 2 ∧ y = 5}
co

# {(x = 2 ∧ y = 5) ∨ (x = −3 ∧ y = 5)}
< await (x > y)

x = x + y;

y = x - y; >

#
{
false

}
//

# {x = 2 ∧ y = 5}
< x = x - y; >

# {x = −3 ∧ y = 5}
oc

#
{
false

}
This program fails to terminate since the condition x > y is never true.

8893 Assignment 1 Solutions 8 Revised: February 16, 2004



8893 Concurrent Programming Assignment #1 — Sample Solutions

3. [10 points] 2.16 on p. 86.
For this proof we introduce a thought variable t to keep track of if the increment in the
last await statement has happened yet.

int x = 0;
int t = 0; # thought variable
## { x == 0 /\ t == 0 }
co

## { x == 0 \/ t == 1 /\ (x == 5 \/ x == 2) }
< await (x != 0) x = x - 2; >
## { t == 1 /\ (x == 3 \/ x == 0) }

//
## { x == 0 \/ t == 1 /\ (x == 5 \/ x == 3) }
< await (x != 0) x = x - 3; >
## { t == 1 /\ (x == 2 \/ x == 0) }

//
## { x == 0 /\ t == 0 }
< await (x == 0) x = x + 5; t = 1; >
## { t == 1 /\ (x == 0 \/ x == 2 \/ x == 3 \/ x == 5) }

oc
## { x == 0 }

First convince yourself that each of the triples above is valid. To do this we apply the
await statement rule together with the assignment axiom. For example, for the first
triple we need to show that
{(x == 0 ∨ t == 1 ∧ (x == 5 ∨ x == 3)) ∧ x 6= 0}
〈x = x− 2〉
{t == 1 ∧ (x == 3 ∨ x == 0)}

is valid. The pre-condition reduces to t == 1∧(x == 5 ∨ x == 3), and by the assignment
axiom we get the post condition. Note that in the case of the third branch the post-
condition is much weaker than what we know (i.e., we could show t == 1 ∧ x == 5) for
the purposes of proving non-interference.

Non-interference:
Consider each of the assignment actions above, using the definition of noninterference
(text 2.5 p. 64).

1. {(x == 0 ∨ t == 1 ∧ (x == 5 ∨ x == 3)) ∧ (x == 0 ∨ t == 1 ∧ (x == 5 ∨ x == 2))}
〈await(x 6= 0)x = x− 2; 〉
{x == 0 ∨ t == 1 ∧ (x == 5 ∨ x == 3)}

The pre-condition reduces to x == 0 ∨ t == 1 ∧ x == 5 and the action gives
t == 1 ∧ x == 3, which implies the post-condition.

2. {(t == 1 ∧ (x == 2 ∨ x == 0)) ∧ (x == 0 ∨ t == 1 ∧ (x == 5 ∨ x == 2))}
〈await(x 6= 0)x = x− 2; 〉
{t == 1 ∧ (x == 2 ∨ x == 0)}

8893 Assignment 1 Solutions 9 Revised: February 16, 2004



8893 Concurrent Programming Assignment #1 — Sample Solutions

In a similar manner, to above.

3. {(x == 0 ∧ t == 0) ∧ (x == 0 ∨ t == 1 ∧ (x == 5 ∨ x == 2))}
〈await(x 6= 0)x = x− 2; 〉
{x == 0 ∧ t == 0}

In this case the pre-condition reduces to x == 0∧t == 0, which, when we apply the
await statement rule reduces to false, meaning that the triple is valid for any await

statement body and post-condition (i.e., it’s impossible for the await statement to
execute from that state, so the code is correct no matter what it does).

4.

{
(t == 1 ∧ (x == 0 ∨ x == 2 ∨ x == 3 ∨ x == 5))∧
(x == 0 ∨ t == 1 ∧ (x == 5 ∨ x == 2))

}
〈await(x 6= 0)x = x− 2; 〉
{t == 1 ∧ (x == 0 ∨ x == 2 ∨ x == 3 ∨ x == 5)}

This is similar to the first two triples, above. The pre-condition reduces to t ==
1 ∧ (x == 5 ∨ x == 2), giving the post condition of t == 1 ∧ (x == 3 ∨ x == 0).

5. {(x == 0 ∨ t == 1 ∧ (x == 5 ∨ x == 2)) ∧ (x == 0 ∨ t == 1 ∧ (x == 5 ∨ x == 3))}
〈await(x 6= 0)x = x− 3; 〉
{x == 0 ∨ t == 1 ∧ (x == 5 ∨ x == 2)}

The pre-condition reduces to x == 0 ∨ t == 1 ∧ x == 5, and using the await rule
as above we can show that the post-condition is t == 1 ∧ x == 2, which implies
the desired condition.

6. {(t == 1 ∧ (x == 3 ∨ x == 0)) ∧ (x == 0 ∨ t == 1 ∧ (x == 5 ∨ x == 3))}
〈await(x 6= 0)x = x− 3; 〉
{t == 1 ∧ (x == 3 ∨ x == 0)}

As for the previous case, here we have the post condition of t == 1 ∧ x == 0.

7. {(x == 0 ∧ t == 0) ∧ (x == 0 ∨ t == 1 ∧ (x == 5 ∨ x == 3))}
〈await(x 6= 0)x = x− 3; 〉
{x == 0 ∧ t == 0}

As for 3 above.

8.

{
(t == 1 ∧ (x == 0 ∨ x == 2 ∨ x == 3 ∨ x == 5))∧
(x == 0 ∨ t == 1 ∧ (x == 5 ∨ x == 3))

}
〈await(x 6= 0)x = x− 3; 〉
{t == 1 ∧ (x == 0 ∨ x == 2 ∨ x == 3 ∨ x == 5)}

Similar to 4 above, the pre-condition reduces to t == 1∧ (x == 5 ∨ x == 3) giving
a post-condition of t == 1 ∧ (x == 2 ∨ x == 3).

9. {(x == 0 ∨ t == 1 ∧ (x == 5 ∨ x == 2)) ∧ (x == 0 ∧ t == 0)}
〈await(x == 0)x = x + 5; t = 1; 〉
{x == 0 ∨ t == 1 ∧ (x == 5 ∨ x == 2)}

The pre-condition reduces to x == 0 ∧ t == 0 which by the await rule and
assignment axiom gives t == 1 ∧ x == 5 which implies the desired post-condition.

8893 Assignment 1 Solutions 10 Revised: February 16, 2004



8893 Concurrent Programming Assignment #1 — Sample Solutions

10. {(t == 1 ∧ (x == 3 ∨ x == 0)) ∧ (x == 0 ∧ t == 0)}
〈await(x == 0)x = x + 5; t = 1; 〉
{t == 1 ∧ (x == 3 ∨ x == 0)}

The pre-condition reduces to false, so any code and post-condition makes a valid
triple (i.e., the pre-condition can’t happen, so the code is not expected to do anything
about it).

11. {(x == 0 ∨ t == 1 ∧ (x == 5 ∨ x == 3)) ∧ (x == 0 ∧ t == 0)}
〈await(x == 0)x = x + 5; t = 1; 〉
{x == 0 ∨ t == 1 ∧ (x == 5 ∨ x == 3)}

As for 9 above.

12. {(t == 1 ∧ (x == 2 ∨ x == 0)) ∧ (x == 0 ∧ t == 0)}
〈await(x == 0)x = x + 5; t = 1; 〉
{t == 1 ∧ (x == 2 ∨ x == 0)}

As for 10 above.

Finally, having shown that the conditions are interference free, the co-begin rule allows
us to conjoin (i.e., “and”) the pre-conditions to get the pre-condition for the co-begin
and similarly for the post-conditions to get the post-condition of x == 0.

8893 Assignment 1 Solutions 11 Revised: February 16, 2004



8893 Concurrent Programming Assignment #1 — Sample Solutions

4. [5 points] 3.7 on p. 144.

1 int lock = 0;
2 process CS[i = 1 to n] {
3 while (true) {
4 < await (lock == 0) >; lock = i; Delay;
5 while (lock != i) {
6 < await (lock == 0) >; lock = i; Delay;
7 }
8 critical section;
9 lock = 0;

10 noncritical section;
11 }
12 }

a) Without the Delay code this protocol does not ensure mutual exclusion. Consider
the case where the await statement in line 4 is enabled in two processes, say i = 1 and
2, at the same time, and both processes get to execute it (in either order). Now if
one, say 1, completes line 4 and goes on to enter its critical section, then 2 completes
line 4 it too will get to enter its critical section, so mutual exclusion is violated.

This protocol does avoid deadlock. For deadlock to occur requires that lock 6= 0
and all processes are waiting on one of the await statements. If a process is waiting
at the await on line 4, then either it has last set lock to 0, or at least one process is
in the critical section, in which case lock = i, and that process will eventually leave
the critical section and set lock = 0, so the process will get to proceed. If all but
one processes are waiting at the await on line 6, then the last process will not enter
the while loop, and thus will evenutally exit the critical section and release another
process.

The protocol does avoid unnecessary delay. If no processes are in their critical section
then lock = 0, so any process wishing to enter will be allowed to do so immediately.

Eventual entry is not assured by this protocol, even if the scheduler is strongly fair
(although I accepted it if you said it was). The condition in the await will not stay
continuously true if any process gets to enter its critical section, so under weakly fair
scheduling some process may be starved at the await. With strongly fair scheduling
no process will be starved at the await, but there is no assurance that a particular
process will ever ’win’ the race to be the last to assign to lock, so a process may
starve anyway.

b) With the given assumptions about Delay, this protocal does ensure mutual exclusion.
If more than one process is waiting before line 4 when lock becomes 0, then one or
more will be released, and the last one to execute lock = i will, after Delay, get to
enter its critical section. All other waiting processes will wait in the loop (lines 5 – 7)
until they ’win’ by being the last to execute lock = i.

8893 Assignment 1 Solutions 12 Revised: February 16, 2004



8893 Concurrent Programming Assignment #1 — Sample Solutions

As above, deadlock is avoided by ensuring that there is always one ’winner’ who will
get to enter the critical section.

The protocol does introduce a small amount of unecessary delay (or is it necessary?),
in the Delay statement, which will be executed even if there are no other processes
waiting. As above, eventual entry is not assured even with a strongly fair scheduler.

8893 Assignment 1 Solutions 13 Revised: February 16, 2004


