
Name: Sample Solutions Student #:

Engineering 8893
Concurrent Programming

Mid-Term Test
Dr. D. K. Peters
March 2, 2004

Instructions: Answer all questions. Write your answers on
this paper. This is a closed book test, no textbooks, notes,
calculators or other aides are permitted.

Q1 /10

Q2 / 5

Q3 /10

Q4 /25

Total / 50

Axioms & Inference Rules

Assignment Axiom: {Px←e} x := e {P}

Composition Rule: {P} S1 {Q}, {Q} S2 {R}
{P} S1; S2 {R}

If Statement Rule: {P ∧ B} S {Q}, (P ∧ ¬B) → Q
{P} if (B) S; {Q}

While Statement Rule: {I ∧ B} S {I}
{I} while (B) S; {I ∧ ¬B}

Rule of Consequence: P′ → P, {P} S {Q}, Q → Q′,
{P′} S {Q′}

Await Statement Rule: {P ∧ B} S {Q},
{P} < await (B) S; > {Q}

Co Statement Rule: {Pi}Si{Qi} are interference free
{P1 ∧ . . . ∧ Pn} co S1; // . . . // Sn; oc {Q1 ∧ . . . ∧Qn}

Semaphore Rules: (R ∧ g > 0) → Qg←(g−1)

{R}P(g){Q}

R → Qg←(g+1)

{R}V(g){Q}

8893 Mid-Term 1 of 11 Revised: 2004.03.11 11 : 05

Name: Sample Solutions Student #:

1. [10 points] Consider the following program:

int x := 0;
{ x == 0 }
co

{ P1 }
< x := x + 2 >
{ Q1 }
//
{ P2 }
< x := x - 3 >
{ Q2 }
//
{ P3 }
< x := x + 4 >
{ Q3 }

oc
{ x == 3 }

a) [6 points] Give the assertions P1, Q1, P2, Q2, P3 and Q3 so that the above program is
a correct proof outline. (Hint: use the technique of weakened assertions.)

P1
df
= x = 0 ∨ x = −3 ∨ x = 4 ∨ x = 1

Q1
df
= x = 2 ∨ x = −1 ∨ x = 6 ∨ x = 3

P2
df
= x = 0 ∨ x = 2 ∨ x = 4 ∨ x = 6

Q2
df
= x = −3 ∨ x = −1 ∨ x = 1 ∨ x = 3

P3
df
= x = 0 ∨ x = 2 ∨ x = −3 ∨ x = −1

Q3
df
= x = 4 ∨ x = 6 ∨ x = 1 ∨ x = 3

b) [4 points] List (but do not prove) the triples that must be verified to show non-
interference.
{P1 ∧ P2} 〈x := x + 2〉 {P2}
{P1 ∧ Q2} 〈x := x + 2〉 {Q2}
{P1 ∧ P3} 〈x := x + 2〉 {P3}
{P1 ∧ Q3} 〈x := x + 2〉 {Q3}
{P2 ∧ P1} 〈x := x− 3〉 {P1}
{P2 ∧ Q1} 〈x := x− 3〉 {Q1}
{P2 ∧ P3} 〈x := x− 3〉 {P3}
{P2 ∧ Q3} 〈x := x− 3〉 {Q3}
{P3 ∧ P1} 〈x := x + 4〉 {P1}
{P3 ∧ Q1} 〈x := x + 4〉 {Q1}
{P3 ∧ P2} 〈x := x + 4〉 {P2}
{P3 ∧ Q2} 〈x := x + 4〉 {Q2}

8893 Mid-Term 2 of 11 Revised: 2004.03.11 11 : 05

Name: Sample Solutions Student #:

2. [5 points] Consider the following program:

co < await (x > 0) x := x - 1; >
// < await (x < 0) x := x + 2; >
// < await (x == 0) x := x - 1; >

oc

a) [2 points] Assuming that the scheduling is weakly fair, for what initial values of x

does the program terminate? Explain.

−1 ≤ x ≤ 1 — For all of these values an await condition is true initially and the
code makes another condition true, which then makes the third true.

b) [1 point] What are the final value(s) of x in (a)?

Initial x Final x

-1 -1
0 0
1 1

c) [2 points] Does the fairness assumption in (a) matter? Explain.

If we assume that these are the only three processes operating then it doesn’t. How-
ever, if any other processes are running on the system then weak fairness is required
to assure that these processes will eventually get to execute.

8893 Mid-Term 3 of 11 Revised: 2004.03.11 11 : 05

Name: Sample Solutions Student #:

3. [10 points] Consider the following proposed solution to the two process critical section
problem.

int n0 := 0;
int n1 := 0;

process P0 {
non_critical_section_0;
n0 := 1;
n0 := n1 + 1;
while (n1 != 0 && n1 <= n0) skip;
critical_section_0;
n0 := 0;

}

process P1 {
non_critical_section_1;
n1 := 1;
n1 := n0 + 1;
while (n0 != 0 && n0 < n1) skip;
critical_section_1;
n1 := 0;

}

For each of the essential properties of a critical section solution listed in (a) through (d),
state if the above solution satisfies the property or not, and justify your answer.

a) [2 points] Mutual exclusion.

Yes. In a manner similar to the proof of Peterson’s algorithm (which this is a slight
variation on) in the notes, let’s add thought variables r0 and r1 as follows:

int n0 := 0;
int n1 := 0;
bool r0 := false;
bool r1 := false;

process P0 {
non_critical_section_0;
< n0 := 1; r0 = true; >
< n0 := n1 + 1; r0 = false; >
while (n1 != 0 && n1 <= n0) skip;
n0 >= 1 /\ !r0 /\
(r1 \/ n1 == 0 \/ n0 < n1)
critical_section_0;
n0 := 0;

}

process P1 {
non_critical_section_1;
< n1 := 1; r1 = true; >
< n1 := n0 + 1; r1 = false; >
while (n0 != 0 && n0 < n1) skip;
n1 >= 1 /\ !r1 /\
(r0 \/ n0 == 0 \/ n1 <= n0)
critical_section_1;
n1 := 0;

}

There is no interferece with the assertions and they cannot both be true at once, so
the configuration is excluded.

b) [2 points] Absence of deadlock.

Yes. The conditions on the spin loops cannot both be true, so one will always get to
enter.

c) [2 points] Absence of unnecessary delays.

Yes. In the case where the other process is in its non-critical section then the corre-
sponding nx variable will be 0 and the other process will enter immediately.

8893 Mid-Term 4 of 11 Revised: 2004.03.11 11 : 05

Name: Sample Solutions Student #:

d) [2 points] Eventual entry.

Yes. The algorithm functions like Peterson’s algorithm in the use of nx as a ‘turn’
indicator. When there is constant contention (i.e., when the critical section is much
longer than the non-critical section) the processes will alternate turns in the critical
sections.

e) [2 points] Why are the assignments n0 := 1 and n1 := 1 necessary in the above al-
gorithm?

Without these assignments mutual exclusion is not assured. Consider the following
sequence (initially n0 == n1 == 0):
P0 P1

ri := n0 + 1
n0 := n1 + 1
n1! = 0
critical section 0

n1 := ri

n0! = 0&&n0 < n1

critical section 1

8893 Mid-Term 5 of 11 Revised: 2004.03.11 11 : 05

Name: Sample Solutions Student #:

4. [25 points] The One-Lane Bridge. Cars coming from the east and west arrive at a one-lane
bridge. Cars heading in the same direction can cross the bridge at the same time, but
cars heading in opposite directions cannot. Cars arriving from the east call eastEnter
before beginning to cross the bridge and eastExit when they have crossed the bridge.
Similarly cars arriving from the west call westEnter to enter, and westExit to leave.

a) [5 points] Give a the pseudo-code for a coarse-grained implementation (i.e., using con-
ditional synchronization statements) for the four enter and exit functions, including
declarations and initial values for all shared variables. Your solution need not ensure
eventual entry but should not cause unnecessary delay (i.e., a car entering from one
direction should never have to wait if there are no cars from the other direction either
on the bridge or waiting).

int numEast = 0; # number of cars on bridge from east
int numWest = 0; # number of cars on bridge from west
INV: numEast > 0 -> numWest == 0 /\
numWest > 0 -> numEast == 0

proc eastEnter() {
< await(numWest == 0) numEast++; >

}

proc eastExit() {
< numEast--; >

}

proc westEnter() {
< await(numEast == 0) numWest++; >

}

proc westExit() {
< numWest--; >

}

8893 Mid-Term 6 of 11 Revised: 2004.03.11 11 : 05

Name: Sample Solutions Student #:

b) [5 points] Modify your solution in (a), above, such that it ensures eventual entry
(i.e., a continuous stream of cars from one direction shouldn’t indefinitely delay a car
attempting to enter from the opposite direction). Give a the pseudo-code for a coarse-
grained implementation for the four enter and exit functions, including declarations
and initial values for all shared variables. (If your solution in (a) does ensure eventual
entry, then simply state this.)

int numEast = 0; # number of cars on bridge from east
int numWest = 0; # number of cars on bridge from west
int delayedEast = 0; # number of cars waiting at east entry
int delayedWest = 0; # number of cars waiting at west entry
int turn = 0; # 0 = east takes priority, 1 = west takes priority
INV: numEast > 0 -> numWest == 0 /\
numWest > 0 -> numEast == 0

proc eastEnter() {
delayedEast++;
< await(numWest == 0 && (delayedWest == 0 || turn == 0))

numEast++; delayedEast--; >
}

proc eastExit() {
< numEast--; turn := 1; >

}

proc westEnter() {
delayedWest++;
< await(numEast == 0 && (delayedEast == 0 || turn == 1))

numWest++; delyedWest--; >
}

proc westExit() {
< numWest--; turn := 0; >

}

8893 Mid-Term 7 of 11 Revised: 2004.03.11 11 : 05

Name: Sample Solutions Student #:

c) [15 points] Using the Semaphore class (as used in assignment #2, with methods P

and V) for synchronization, give a pseudo-Java implementation of a class that imple-
ments your solution in (b), above. The class must have public methods eastEnter,
westEnter, eastExit, westExit and a constructor to give the initial values of all
the variables. Do not use the synchronized Java keyword. An implementation of a
solution that does not ensure eventual entry (i.e., from (a)) will be considered for a
maximum of 10 points.

/***
* Control access to the one lane bridge.
**/
class BridgeFair {

/** mutex semaphore */
Semaphore entry;
/** east entry semaphore */
Semaphore eastEntry;
/** west entry semaphore */
Semaphore westEntry;
/** number of cars on bridge from East */
int numEast;
/** number of cars on bridge from West */
int numWest;
/** number of cars waiting to enter from the East */
int delayedEast;
/** number of cars waiting to enter from the West */
int delayedWest;
/** 0 = east takes priority, 1 = west takes priority */
int turn;

/**
* @param maxR Maximum number of concurrent readers
*/
BridgeFair()
{

entry = new Semaphore(1);
eastEntry = new Semaphore(0);
westEntry = new Semaphore(0);
numEast = 0;
numWest = 0;
delayedEast = 0;
delayedWest = 0;
turn = 0;

}

8893 Mid-Term 8 of 11 Revised: 2004.03.11 11 : 05

Name: Sample Solutions Student #:

/***
* Request permission to enter from the East.
* @param id Requesting car.
* @throws InterruptedException
**/
public void eastEnter(int id)

throws InterruptedException
{

entry.P();
if (numWest > 0 || (delayedWest > 0 && turn == 1)) {

delayedEast++;
System.out.println("EAST " + id + " waiting.");
entry.V();
eastEntry.P();

}
System.out.println("EAST " + id + " enters.");
numEast++;
signal();

}

/***
* exit from East.
* @param id car exiting.
* @throws InterruptedException
**/
public void eastExit(int id)

throws InterruptedException
{

entry.P();
System.out.println("EAST " + id + " exit.");
numEast--;
turn = 1; // Allow entry from the West if any waiting
signal();

}

8893 Mid-Term 9 of 11 Revised: 2004.03.11 11 : 05

Name: Sample Solutions Student #:

/***
* Request permission to enter from the West.
* @param id Requesting car.
* @throws InterruptedException
**/
public void westEnter(int id)

throws InterruptedException
{

entry.P();
if (numEast > 0 || (delayedEast > 0 && turn == 0)) {

delayedWest++;
System.out.println("WEST " + id + " waiting.");
entry.V();
westEntry.P();

}
System.out.println("WEST " + id + " enters.");
numWest++;
signal();

}

/***
* exit from West.
* @param id car exiting.
* @throws InterruptedException
**/
public void westExit(int id)

throws InterruptedException
{

entry.P();
System.out.println("WEST " + id + " exit.");
numWest--;
turn = 0; // Allow entry from the East if any waiting
signal();

}

8893 Mid-Term 10 of 11 Revised: 2004.03.11 11 : 05

Name: Sample Solutions Student #:

/***
* signal some waiting process
**/
private void signal()

throws InterruptedException
{

checkSafety();
if (numWest == 0 && delayedEast > 0 && (delayedWest == 0 || turn == 0)) {

// Let in from the East
delayedEast--;
eastEntry.V();

} else if (numEast == 0 && delayedWest > 0 &&
(delayedEast == 0 || turn == 1)) {

// Let in from the West
delayedWest--;
westEntry.V();

} else { // nobody waiting, allow entry again
entry.V();

}
}

/***
* check safety property
***/
private void checkSafety()
{

if (numEast > 0 && numWest > 0) {
System.out.println("CRASH: numEast = " + numEast +

", numWest = " + numWest + " -- CRASH");
}

}
}

8893 Mid-Term 11 of 11 Revised: 2004.03.11 11 : 05

